
Rippl: Recursively Inferred Pure functional
Programming Language

Da Hua Chen (Tester), Hollis Lehv (System Architect),
Amanda Liu (Language Guru), Hans Montero (Manager)

1 Motivation

Rippl is a functional language with the safety and elegance of pure languages
like Haskell. With list comprehensions, a strong static type system implement-
ing Hindley-Milner style inference, higher-order functions, and simple syntax,
Rippl is a powerful computational language with strong support for list-oriented
calculations as well as support for association of items of different types in the
form of tuples. Rippl will be an appropriate introduction for users without prior
functional programming experience who want to effectively and safely perform
complex mathematical calculations.

This combination of features creates an incredibly powerful, expressive lan-
guage for list-based data calculations and transformations with strong static guar-
antees for safety in a lightweight way that doesn’t burden the user. The laziness
also allows for the creation of massive lists and data executions that don’t burden
runtime or impede on safety unless they are evaluated, further giving the user
more freedom in the way they write their programs.

2 Language Paradigms and Features

Rippl will be a declarative language with strong, static typing, static scoping, and
lazy evaluation semantics.

Rippl will also feature higher order functions, and partial application. Rippl
will also go beyond the Haskell-like suggested project by including the additional
language features of type inference, immutability, and anonymous functions.

3 Hello World

This program demonstrates the use of type annotations and the main method
entrypoint as well as the evaluation of certain expressions like mathematical
integer addition.

1 main :: int
2 main = 1 + 1

1



4 Rippl in One Slide

Bertrand’s Postulate stated in the Weak Prime Number Theorem that there is
always a prime number to be found between some n and its double 2n. This
postulate was later proven by Pafnuty Chebyshev and refined by Paul Erdös.
The following program includes a function that determines the primality of a
number and a function that takes a n and returns the first prime between n and
2n.

This program displays a lot of complex language features of Rippl including
list comprehensions, lambda abstractions, type inference and annotations, and
higher order functions.

1 prime_number_theorem :: int -> int
2 prime_number_theorem n =

3 let is_prime n =
4 let max = n / 2 in
5 let range = [2...max] in
6 let divisors = [x | x over range, n % x == 0] in
7 len divisors == 0

8 in
9 let range = [(n+1)...2*n] in

10 let odd_range = [x | x over range, x % 2 != 0 ] in
11 foldl

12 (fun prev -> fun curr ->
13 if is_prime prev then prev else curr)
14 (head odd_range)
15 odd_range

2


