
∗ Course website: https://verigu.github.io/4115Fall2022/

Code Generation

Ronghui Gu
Fall 2022

Columbia University

1

https://verigu.github.io/4115Fall2022/

The Final Exam

The Final Exam

75 minutes

Closed book

One double-sided sheet of notes of your own devising

Anything discussed in class is fair game

Little, if any, programming

Details of OCaml/C/C++/Java syntax not required

2

Code Generation

Code Generation

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

IR Optimization

Code Generation

0101110101...

front-end

middle-end

back-end

3

Code Generation

• Choose the appropriate machine instructions for each IR
instruction.

• Mange finite machine resources (e.g., registers).
• Implement runtime environment.

4

The Memory Hierarchy

Memory tradeo�s: there is an enormous tradeo� between
speed and size in memory.

• Registers: 1 ns, 1 KB
• Per-CPU cache: 5 ns, 128 KB
• Shared cache: 25 ns, 6 MB
• Main memory: 100 ns, 16 GB
• Disk: 10 ms, 1 TB
• Network: 100 ms, huge

5

The Challenges of Code Generation

Goal: Try to get the best of all worlds by using multiple types
of memory.

Challenges:

• All variables in TAC live in memory.
• Position objects in a way that takes maximum advantage

of the memory hierarchy.
• Do so without hints from the programmer.

6

Register Allocation

Using registers intelligently is a critical step in any compiler.

Register allocation is the process of assigning variables to
registers and managing data transfer in and out of registers.

Challenges:

• In TAC, there are an unlimited number of variables.
• On a physical machine there are a small number of

registers.

7

Register Allocation

Explore three algorithms for register allocation:

• Naive (“no”) register allocation.
• Linear scan register allocation.
• Graph-coloring register allocation.

8

Naive Register Allocation

Naive Register Allocation

Idea: store every value in main memory, loading values only
when they’re needed.

• Insert load to pull the values from memory into registers
before access.

• Insert store to store the values back into memory after
access.

9

Naive Register Allocation

a = b + c;

lw $t0, -12(fp)

lw $t1, -16(fp)

add $t2, $t0, $t1

sw $t2, -8(fp)

d = a;

lw $t0, -8(fp)

sw $t0, -20(fp)

10

Naive Register Allocation

a = b + c;

lw $t0, -12(fp)

lw $t1, -16(fp)

add $t2, $t0, $t1

sw $t2, -8(fp)

d = a;

lw $t0, -8(fp)

sw $t0, -20(fp)

10

Naive Register Allocation

a = b + c;

lw $t0, -12(fp)

lw $t1, -16(fp)

add $t2, $t0, $t1

sw $t2, -8(fp)

d = a;

lw $t0, -8(fp)

sw $t0, -20(fp)

10

Naive Register Allocation

Advantages:

• Can easily translate IR to assembly.
• Never need to worry about running out of registers.

Disadvantages:

• Unnecessary loads and stores.
• Wastes space.
• Too slow.

11

Naive Register Allocation

Advantages:

• Can easily translate IR to assembly.
• Never need to worry about running out of registers.

Disadvantages:

• Unnecessary loads and stores.
• Wastes space.
• Too slow.

11

Naive Register Allocation

Advantages:

• Can easily translate IR to assembly.
• Never need to worry about running out of registers.

Disadvantages:

• Unnecessary loads and stores.
• Wastes space.
• Too slow.

11

Linear Scan Register Allocation

A Better Allocator

Goal: try to hold as many variables in registers as possible.

Register consistency:

• At each program point, each variable must be in the same
location.

• At each program point, each register holds at most one
live variable.

12

Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

e = d + a;

f = b + c;

f = f + b;

d = e + f;

g = d;

13

Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.
{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

14

Linear Scan

15

Another Example

16

Register Spilling

If a register cannot be found for a variable v, we may need to
spill a variable.

When a variable is spilled, it is stored in memory rather than a
register.

Spilling is slow, but sometimes necessary.

17

Another Example

18

Linear Scan Algorithm

Advantages

Disadvantages

19

Graph-coloring Register Allocation

The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

20

The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

20

Graph Coloring

Graph coloring is NP-complete if there are at least three
registers.

Chaitin’s Algorithm: we can delete the node with fewer than k

edges from the graph and color what remains with k colors.

21

Chaitin’s Algorithm

22

One Problem

What if we can’t find a node with fewer than k neighbors?

Choose and remove an arbitrary node, marking it
troublesome.

When adding node back in, it may be possible to find a valid
color.

Otherwise, we have to spill that node.

23

Chaitin’s Algorithm Reloaded

24

	The Final Exam

