
∗ Course website: https://verigu.github.io/4115Fall2022/
∗∗ These slides are borrowed from Prof. Edwards.

Basic Elements of Programming Languages

Ronghui Gu
Fall 2022

Columbia University

1

https://verigu.github.io/4115Fall2022/
Ronghui Gu

What is a Programming Language?

A programming language is a notation that a person and a
computer can both understand.

• It allows you to express what is the task to compute
• It allows a computer to execute the computation task

2

What is a Programming Language?

A programming language is a notation that a person and a
computer can both understand.

• It allows you to express what is the task to compute

• It allows a computer to execute the computation task

2

What is a Programming Language?

A programming language is a notation that a person and a
computer can both understand.

• It allows you to express what is the task to compute
• It allows a computer to execute the computation task

2

Language Specifications

How to Define a Language

When designing a language, it’s a good idea to start by
sketching forms that you want to appear in your language as
well as forms you do not want to appear.

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

Examples

a i n t vg (i n t a ,
{

return (a ; + b)
{ {

Non-Examples

3

How to Define a Language

When designing a language, it’s a good idea to start by
sketching forms that you want to appear in your language as
well as forms you do not want to appear.

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

Examples

a i n t vg (i n t a ,
{

return (a ; + b)
{ {

Non-Examples

3

How to Define a Language

When designing a language, it’s a good idea to start by
sketching forms that you want to appear in your language as
well as forms you do not want to appear.

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

Examples

a i n t vg (i n t a ,
{

return (a ; + b)
{ {

Non-Examples

3

How to Define a Language

• An o�cial documents, with informal descriptions.
• An o�cial documents, with formal descriptions.
• A reference implementation, e.g., a compiler.

Some language definitions are sanctioned by an o�cial
standards organization, e.g., C11 (ISO/IEC 9899:2011).

i n t compare ()
{

i n t a [1 0] , b [1 0] ;
i f (a > b)

return t rue ;
return f a l s e ;

}

undefined behavior, unspecified behavior,
implementation-defined behavior, ...

4

How to Define a Language

• An o�cial documents, with informal descriptions.
• An o�cial documents, with formal descriptions.
• A reference implementation, e.g., a compiler.

Some language definitions are sanctioned by an o�cial
standards organization, e.g., C11 (ISO/IEC 9899:2011).

i n t compare ()
{

i n t a [1 0] , b [1 0] ;
i f (a > b)

return t rue ;
return f a l s e ;

}

undefined behavior, unspecified behavior,
implementation-defined behavior, ...

4

How to Define a Language

• An o�cial documents, with informal descriptions.
• An o�cial documents, with formal descriptions.
• A reference implementation, e.g., a compiler.

Some language definitions are sanctioned by an o�cial
standards organization, e.g., C11 (ISO/IEC 9899:2011).

i n t compare ()
{

i n t a [1 0] , b [1 0] ;
i f (a > b)

return t rue ;
return f a l s e ;

}

undefined behavior, unspecified behavior,
implementation-defined behavior, ...

4

Aspects of Language Specifications

Syntax Semantics Pragmatics

• Syntax: how characters combine to form a program.
• Semantics: what the program means.
• Pragmatics: common programming idioms; programming

environments; the standard library; ecosystems.

5

Aspects of Language Specifications

Syntax Semantics Pragmatics

• Syntax: how characters combine to form a program.

• Semantics: what the program means.
• Pragmatics: common programming idioms; programming

environments; the standard library; ecosystems.

5

Aspects of Language Specifications

Syntax Semantics Pragmatics

• Syntax: how characters combine to form a program.
• Semantics: what the program means.

• Pragmatics: common programming idioms; programming
environments; the standard library; ecosystems.

5

Aspects of Language Specifications

Syntax Semantics Pragmatics

• Syntax: how characters combine to form a program.
• Semantics: what the program means.
• Pragmatics: common programming idioms; programming

environments; the standard library; ecosystems.

5

Syntax

Syntax is divided into:

• Microsyntax

: specifies how the characters in the source
code stream are grouped into tokens.

• Abstract syntax

: specifies how the tokens are grouped
into phrases, e.g., expressions, statements, etc.

6

Syntax

Syntax is divided into:

• Microsyntax: specifies how the characters in the source
code stream are grouped into tokens.

• Abstract syntax

: specifies how the tokens are grouped
into phrases, e.g., expressions, statements, etc.

6

Syntax

Syntax is divided into:

• Microsyntax: specifies how the characters in the source
code stream are grouped into tokens.

• Abstract syntax: specifies how the tokens are grouped
into phrases, e.g., expressions, statements, etc.

6

Microsytax

Source program is just a sequence of characters.

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

i n t SP a v g (i n t SP a , SP i n t SP b) NL
{ NL
SP SP r e t u r n SP (a SP + SP b) SP / SP 2 ; NL
} NL

7

Microsytax

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

Token Lexemes Pattern (as regular expressions)
ID avg, a, b letter followed by letters or digits
KEYWORD int, return letters
NUMBER 2 digits
OPERATOR +, / +, /
PUNCTUATION ;,(,),{,}, ;,(,),{,},

int avg (int a , int b) { return (a + b

) / 2 ; }

8

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Lexical Analysis Gives Tokens

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

int avg (int a , int b) { return (a + b

) / 2 ; }

• Throw errors when failing to create tokens: malformed
numbers (e.g., 23f465#g) or invalid characters (such as
non-ASCII characters in C).

9

Ronghui Gu

Abstract Syntax

Abstract Syntax can be defined using Context Free Grammar.
Nonterminals can always be replaced using the rules,
regardless of their contexts.

expr :
expr OPERATOR expr

| (expr)
| NUMBER
| ID

Expression (a+ b)/2 can be parsed into an AST:

/

+

a b

2

10

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Abstract Syntax

Abstract Syntax can be defined using Context Free Grammar.
Nonterminals can always be replaced using the rules,
regardless of their contexts.

expr :
expr OPERATOR expr

| (expr)
| NUMBER
| ID

Ambiguous! What about a+ b/2 ?

/

+

a b

2

+

a /

b 2
10

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Syntax Analysis Gives an Abstract Syntax Tree

func

int avg args

arg

int a

arg

int b

return

/

+

a b

2

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

• Syntax analysis will throw
errors if “}” is missing. Lexical
analysis will not.

11

Ronghui Gu

Ronghui Gu

Ronghui Gu

Semantics

• Static Semantics

: deals with legality rules—things you
can check before running the code (compile time), e.g.,
type, scope, for some languages.

• Dynamic Semantics

: deals with the execution behavior;
things that can only be known at runtime, e.g., value.

12

Semantics

• Static Semantics: deals with legality rules—things you
can check before running the code (compile time), e.g.,
type, scope, for some languages.

• Dynamic Semantics

: deals with the execution behavior;
things that can only be known at runtime, e.g., value.

12

Semantics

• Static Semantics: deals with legality rules—things you
can check before running the code (compile time), e.g.,
type, scope, for some languages.

• Dynamic Semantics: deals with the execution behavior;
things that can only be known at runtime, e.g., value.

12

Static Semantics

We can use inference rules to define semantics, e.g., type:

NUMBER : int
expr : int

(expr) : int

expr1 : int expr2 : int
expr1 OPERATOR expr2 : int

13

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Semantic Analysis: Resolve Symbols; Verify Types

Symbol Table

int a

int b

func

int avg args

arg

int a

arg

int b

return

/

+

a b

2

14

Ronghui Gu

Ronghui Gu

Ronghui Gu

Dynamic Semantics

We can use inference rules to define semantics, e.g., value:

eval(NUMBER) = NUMBER
eval(expr) = n

eval((expr)) = n

eval(expr1) = n1 eval(expr2) = n2

eval(expr1 + expr2) = n1 + n2

15

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Dynamic Semantics

Consider the integer range?

eval(NUMBER) = NUMBER
eval(expr) = n

eval((expr)) = n

eval(expr1) = n1 eval(expr2) = n2

eval(expr1 + expr2) = n1 + n2

15

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Dynamic Semantics

Consider the integer range:

wrap(NUMBER) = n

eval(NUMBER) = n

eval(expr) = n

eval((expr)) = n

eval(expr1) = n1 eval(expr2) = n2 wrap(n1 + n2) = n

eval(expr1 + expr2) = n

16

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Programming Paradigms

Programming Paradigms

A programming paradigm is a style, or “way,” of programming.
Some languages make it easy to write in some paradigms but
not others.

17

Imperative Programming

An imperative program specifies how a computation is to be
done: a sequence of statements that update state.

result = []
i = 0
numStu = len (students)

start :
i f i >= numStu goto finished
name = students [i]
nameLength = len (name)
i f nameLength <= 5 goto nextOne
addToList (result , name)

nextOne :
i = i + 1
goto start

finished :
return result

18

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Structured Programming

A kind of imperative programming with clean, goto-free,
nested control structures. Go To Statement Considered
Harmful by Dijkstra.

r e s u l t = []
for i in range (len (students)) :

name = students [i]
i f len (name) > 5 :

addToList (resu l t , name)
p r i n t (r e s u l t)

19

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

Structured Programming

cppreference.com:
[Goto statement is] used when it is otherwise impos-
sible to transfer control to the desired location using
other statements.

C tutorials:
Use of goto statement is highly discouraged in any
programming language because it makes di�cult to
trace the control flow of a program, making the pro-
gram hard to understand and hard to modify. Any pro-
gram that uses a goto can be rewritten to avoid them.

20

Procedural Programming

Imperative programming with procedure calls.

def f i l t e r L i s t (students) :
r e s u l t = []
for name in students :

i f len (name) > 5 :
addToList (resu l t , name)

return r e s u l t

p r i n t (f i l t e r L i s t (students))

21

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Object-Oriented Programming

An object-oriented program does its computation with
interacting objects.

c lass Student :
def _ _ i n i t _ _ (s e l f , name) :

s e l f . name = name
s e l f . department = " CS "

def f i l t e r L i s t (students) :
r e s u l t = []
for student in students :

i f student . name . __len__ () > 5 :
r e s u l t . append (student . name)

return r e s u l t

p r i n t (f i l t e r L i s t (students))

22

Declarative Programming

A declarative program specifies what computation is to be
done. It expresses the logic of a computation without
describing its control flow.

se lec t name
from students
where length (name) > 5

23

Ronghui Gu

Ronghui Gu

Functional Programming

A functional program treats computation as the evaluation of
mathematical functions and avoids side e�ects.

def isNameLong (name) :
return len (name) > 5

p r i n t (
l i s t (

f i l t e r (isNameLong , students)))

24

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Ronghui Gu

Functional Programming

Using lambda calculus:

p r i n t (
l i s t (

f i l t e r (lambda name : len (name) >5 , students)))

25

Ronghui Gu

Ronghui Gu

Functional Programming

Using function composition:

compose (pr int , l i s t , f i l t e r * (lambda name : len (name) > 5))
(students)

∗A variant of the built-in filter.

26

Ronghui Gu

Ronghui Gu

	Language Specifications
	Programming Paradigms

