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Storage Classes and Memory Layout
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. ) it Program
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time; persist throughout run
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memory



Static Objects

class Example {
public static final int a = 3;

public void hello() {
System.out.println("Hello");
}
}

Advantages

Zero-cost memory
management

Often faster access (address a
constant)

No out-of-memory danger

Examples
Static class variable
String constant “Hello”

Information about the
Example class

Disadvantages

Size and number must be
known beforehand

Wasteful



The Stack and Activation Records



Stack-Allocated Objects

Idea: some objects persist from when a procedure is called to
when it returns.

Naturally implemented with a stack: linear array of memory
that grows and shrinks at only one boundary.

Natural for supporting recursion.

Each invocation of a procedure gets its own frame (activation
record) where it stores its own local variables and
bookkeeping information.



An Activation Record: The State Before Calling bar

b From Caller
a
Return addr. Frame Ptr.

Old frame ptr.

int foo(int a, int b) {
int ¢, d;

bar(1, 2, 3); Registers
}

S (Nwiaa|n

«<— Stack Ptr.




Recursive Fibonacci

(Real C) (Assembly-like C)
int fib(int n) { int fib(int n) {
int tmp1, tmp2, tmp3;
if (n<2) tmp1 = n < 2;
if (1tmp1) goto L1;
return 1; return 1;
else L1: tmp1 = n - 1;
return tmp2 = fib(tmp1);
fib(n-1) L2: tmp1 = n - 2;
+ tmp3 = fib(tmp1);
fib(n-2); L3: tmp1 = tmp2 + tmp3;
return tmp1;
} }
e
fib(3)
/ A
fib(2)  fib(1)
7 N

fib(1)  fib(o) Executing fib(3)



int fib(int n) {
int tmpl, tmp2, tmp3;
tmpl = n < 2;
if (Itmp1) goto L1;
return 1;

L1: tmpl =n - 1;
tmp2 = fib(tmpl);

L2: tmpl = n - 2;
tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;




n=3 ' |
@ return address  *

int fib(int n) { last frame pointer * ]
int tmpl, tmp2, tmp3; tmp1 =2
tmp2 =
tmpl = n < 2; tmp3 =
if (1tmpl) goto L1; <o

return 1; E

L1: tmpl =n- 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);
L3: tmpl = tmp2 + tmp3;

return tmpl;



int fib(int n) {

int tmpl, tmp2, tmp3;
tmpl = n < 2;
if (Itmp1) goto L1,

return 1;

L1: tmpl =n- 1;
tmp2 = fib(tmpl); +

L2: tmpl = n - 2;

tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;

E return address
last fra inter °

E»

[n=-3

return address  *

last frame pointer
tmp1 =2

tmp2 =

tmp3 =

n=2

tmp1 =1
tmp2 =
tmp3 =
n=-1




int fib(int n) {

int tmpl, tmp2, tmp3;
tmpl = n < 2;

if (Itmp1) goto L1,
return 1;

L1: tmpl =n - 1;

[n=-3

return address  *

last frame pointer
tmp1 =2

tmp2 =

tmp3 =

n=2

return address
last fra inter ®

tmp2 = fib(tmpl); *+= tmp1 = 1
L2: tmpl = n - 2; tmp2 =

tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;

tmp3
n=n1

@ return address  *

last frame pointer *
tmp1 =1

tmp2
tmp3 =




int fib(int n) {

int tmpl, tmp2, tmp3;
tmpl = n < 2;
if (tmpl) goto L1;

return 1;

L1: tmpl =n - 1;
tmp2 = fib(tmpl); =

L2: tmpl = n - 2;

tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;

E return address
last fra inter °

E»
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return address  *

last frame pointer
tmp1 =2

tmp2 =

tmp3 =

n=2

tmp1 =0
tmp2 =1
tmp3 =
n=o0




int fib(int n) {

int tmpl, tmp2, tmp3;
tmpl = n < 2;

if (Itmp1) goto L1,
return 1;

L1: tmpl =n - 1;
tmp2 = fib(tmpl); +

L2: tmpl = n - 2;

[n=-3

return address  *

last frame pointer

tmp1 =2

tmp2 =

tmp3 =

n=2

return address
M
tmp1=0

tmp2 =1

tmp3 = fib(tmpl); «—— tmp3 =

L3: tmpl = tmp2 + tmp3;

return tmpl;

n=o0

E return address  *

last frame pointer
tmp1 =1

tmp2
tmp3 =




[n=-3

return address  *
int fib(int n) { last frame pointer
int tmpl, tmp2, tmp3; tmp1 = 2
tmp2 =
tmpl = n < 2;
if (Itmp1) goto L1; tmp3 =
if (tmpl) goto L1; <o

return 1; KL | return address
L1: tmpl =n - 1; last fra inter ®

tmp2 = fib(tmpl); + tmp1 = 2
L2: tmpl = n - 2; tmp2 =1
tmp3 = fib(tmpl); tmp3 =1

L3: tmpl = tmp2 + tmp3; E
return tmpl;



int fib(int n) {

int tmpl, tmp2, tmp3;
tmpl = n < 2;
if (tmpl) goto L1;

return 1;

L1: tmpl =n - 1;

tmp2 = fib(tmpl);

L2: tmpl = n - 2;

tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;
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int fib(int n) {

int tmpl, tmp2, tmp3;

tmpl = n < 2;
if (Itmp1) goto L1,
return 1;

L1: tmpl =n - 1;
tmp2 = fib(tmpl);

»

n=3

return address  *

last frame pointer

tmp1 =1
tmp2 =2
tmp3 =
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return address
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int fib(int n) {
int tmpl, tmp2, tmp3;
tmpl = n < 2;
if (tmpl) goto L1;
return 1;
L1: tmpl =n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);
L3: tmpl = tmp2 + tmp3;
return tmpl;

»

n=3 | |
return address  *
last frame pointer *—|
tmp1 = 3+ result
tmp2 =2
tmp3 =1




Allocating Fixed-Size Arrays

Local arrays with fixed size are easy to stack.

void foo ()

{

}

int a;
int b[10];
int c;

return address

a

blo]

b['o]

€

+— FP

— FP — 48



Allocating Variable-Sized Arrays

Variable-sized local arrays aren’t as easy.

return address | «— FP

void foo(int n)
( a

—_—

int bins b[n-1]

int c; o
} :

b[o]
c —FP—7?

Doesn’t work: generated code expects a fixed offset for c.
Even worse for multi-dimensional arrays.

10



Allocating Variable-Sized Arrays

As always:

return address

add a level of indirection

a

void foo(int n)

b-ptr

{

int a;

C

int blnl;
int c;

}

b[n-1]

blo]

«— FP

Variables remain constant offset from frame pointer.

1"



Implementing Nested Functions with Access Links

(access link) °
a|x=5
let by = S =42

let a x s =

let ¢ z =2 + s in
let d w= ¢ (w+l) in
d (y+1) in (* b *)

let e g =Db (g+l) in

e (x+1) (* a *)

What does “a 5 42" give?

12
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Implementing Nested Functions with Access Links

lot a x s (access link)
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Implementing Nested Functions with Access Links

let a x s =
let by =
let ¢ z =2z + s in
let d w= ¢ (w+l) in
d (y+1) in (* b *)
let e g =Db (g+l) in

e (x+1) (* a *)

(access link) °

2X=5

S =42

_| (access link) 4
-6

(access link)

5 y=7

What does “a 5 42" give?

_| (access link) <
“lw=8

| (access link) 4
1 .

12



In-Memory Layout Issues



Layout of Records and Unions

Modern processors have byte-addressable memory.

The IBM 360 (c. 1964)
helped to popularize
byte-addressable memory.

Many data types (integers, addresses, floating-point numbers)
are wider than a byte.

16-bit integer: n
32-bit integer: n

13



Layout of Records and Unions

Modern memory systems read
data in 32-, 64-, or 128-bit chunks:

n How about reading an unaligned

[ 7]6]s]4] el

(]9 |8 3 ]2]1]0
7 6 ) 4

Reading an aligned 32-bit value is
fast: a single operation.

[3f2f1]0]
|7 Jofs]e]
11 Jolofs
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Padding

To avoid unaligned accesses, the C compiler pads the layout of
unions and records. Rules:

+ Each n-byte-aligned object must start on a multiple of n bytes
(no unaligned accesses).

+ Any object containing an n-byte-aligned object must be of size
mn for some integer m (aligned even when arrayed).

struct padded {

int x; /* 4 bytes */ struct padded {

char z; /[* 1 byte */ char a; /* 1 byte */
short y; /* 2 bytes */ short b; /* 2 bytes */
char w; /* 1 byte */ short c; /* 2 bytes */

s

15



Padding

To avoid unaligned accesses, the C compiler pads the layout of
unions and records. Rules:

+ Each n-byte-aligned object must start on a multiple of n bytes
(no unaligned accesses).

+ Any object containing an n-byte-aligned object must be of size
mn for some integer m (aligned even when arrayed).

struct padded {

int x; /* 4 bytes */ struct padded {

char z; [* 1 byte */ char a; /* 1 byte */

char w; /* 1 byte */ short b; /* 2 bytes */
2 bytes */ short c; /* 2 bytes */

short y; /*

E s

(b lbf]al
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Padding: (1) or (2)?

struct padded {
int a; /* 4 bytes */
char b; /* 1 byte */
char ¢; /* 1 byte */

b
L c|b L e o]

(1) (2)

17



A C union shares one space among all fields

union twostructs {

struct {
char c; /* 1 byte */
int i; /* 4 bytes */
}a;
struct {
union intchar { short s1; /* 2 bytes */
int i; [* 4 bytes */ short s2; /* 2 bytes */
char ¢; /[* 1 byte */ } b;
It I

i i

18



Basic policy in C: an array is m
just one object after another

in memory.

What if we remove rule 2 of

padding? EEE blo]
" BEon
it DRI

19



Arrays and Aggregate types

The largest primitive type
dictates the alignment

struct {
short a;
short b;
char c;

}dlal;

20



Arrays and Aggregate types

The largest primitive type “n“n dlo]

dictates the alignment ﬂﬂ- dl1]
struct { -nn

Tk BRERE

Fl EENE o
NEnn

21



Arrays of Arrays

char alsl;

2lo]
puascly al]
al2]

22



The Heap




Heap-Allocated Storage

A heap is a region of memory where blocks can be
dynamically allocated and deallocated in any order.

23



Dynamic Storage Allocation in C

struct point {
int x, y;
};

int play with points(int n)

{
int i;
struct point *points;

points = malloc(n * sizeof(struct point));

for (i =0 ; i<mn; i+t ) {
points|[i].x = random ();
points[i].y = random ();

}

* do something with the array

free (points);




Dynamic Storage Allocation

25



Dynamic Storage Allocation
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Dynamic Storage Allocation
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Dynamic Storage Allocation

I s
e (D
] ] [0
et
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Dynamic Storage Allocation

e D

et

25



Dynamic Storage Allocation

Rules:
Each allocated block contiguous
Blocks stay fixed once allocated
malloc()

free()

26



Simple Dynamic Storage Allocation

Maintaining information about free memory
Simplest: Linked list

The algorithm for locating a suitable block
Simplest: First-fit

The algorithm for freeing an allocated block

Simplest: Coalesce adjacent free blocks

27



Simple Dynamic Storage Allocation

| s v




Simple Dynamic Storage Allocation

| s N
malloc(-)




Simple Dynamic Storage Allocation

| s N
malloc(-)

| HON | B




Simple Dynamic Storage Allocation

| s N
malloc(-)

| HON | B

free( ¢ )




Simple Dynamic Storage Allocation

| s v
malloc( [ )
| ___HON | B
free( ¢ )

50 s v |
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Fragmentation

malloc( - ) seven times give

free() four times gives

N N N
malloc( _ )?

Need more memory; can’t use fragmented memory.

Zebra Tapir

29



Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

[
/

>I<>|<

a

*b

**b

B N

c Pointers

**c Handles

The original
Macintosh did this
to save memory.

30



Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

k%

\

a

a

W

-

*h *c  Pointers

T

**b

\

**c¢ Handles

The original
Macintosh did this
to save memory.
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Automatic Garbage Collection



Automatic Garbage Collection

Entrust the runtime system with freeing heap objects

Now common: Java, C#, Javascript, Python, Ruby, OCaml and
most functional languages

Advantages? Disadvantages?

31



Reference Counting

What and when to free?

 Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in n 42,17

let ¢ = (1,2)::b in
b

32
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Reference Counting

What and when to free?

 Maintain count of references to each object
+ Free when count reaches zero
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let b = [a;a] in

C \

let ¢ = (1,2)::b in N b ~,
b HRE_EAlE_ NNE|
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Reference Counting

What and when to free?

 Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in 42, 17 \
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Reference Counting

What and when to free?

 Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [asa] in 42, 17
let ¢ = (1,2)::b in b ~
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Reference Counting

What and when to free?

 Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [asa] in 42, 17
let ¢ = (1,2)::b in b ~

b L T )
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Issues with Reference Counting

Circular structures defy reference counting?

[a__Tb]

33



Mark-and-Sweep

What and when to free?

« Stop-the-world algorithm invoked when memory full
+ Breadth-first-search marks all reachable memory
« All unmarked items freed

let a = (42, 17) in
let b = [a;a] in
let ¢ = (1,2)::b in
b

34
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Mark-and-Sweep

What and when to free?

« Stop-the-world algorithm invoked when memory full
+ Breadth-first-search marks all reachable memory
« All unmarked items freed

let a = (427 17) in
let b = [a;a] in . 42, 17
let ¢ = (1,2)::b in b ~

b L [ ] \437
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Mark-and-Sweep

Mark-and-sweep is faster overall; may induce big pauses

Mark-and-compact variant also moves or copies reachable
objects to eliminate fragmentation

Incremental garbage collectors try to avoid doing everything
at once

Most objects die young; generational garbage collectors
segregate heap objects by age

Parallel garbage collection tricky

Real-time garbage collection tricky

35



Objects and Inheritance



Single Inheritance

Simple: Add new fields to end of the object

Fields in base class always at same offset in derived class
(compiler never reorders)

Consequence: Derived classes can never remove fields
C++ Equivalent C

class Shape {

double x, y;
b 15
class Box : Shape {

double h, w;

1

struct Shape {
double x, y;

struct Box {
double x, y;
double h, w;

ki

class Circle : Shape {
double r;

I

struct Circle {
double x, y;
double r;

s
e

36



Virtual Functions

class Shape {
virtual void draw(); // Invoked by object’s run-time class
I [/ not its compile-time type.

class Line : public Shape {
void draw();

}

class Arc : public Shape {
void draw();

I

Shape *s[10];

s[o] = new Line;

s[1] = new Arc;

s[o]->draw(); /] Invoke Line::draw()
s[1]->draw (); // Invoke Arc::draw()

37



Virtual Functions

Trick: add to each object a pointer to the virtual table for its
type, filled with pointers to the virtual functions.

Like the objects themselves, the virtual table for each derived
type begins identically.

A's Vibl B’s Vibl
struct A { . .
e A::Foo B::Foo
virtual void Foo(); .. ..
virtual void Bar(); A::Bar A::Bar
g B::Baz
struct B : A { al
int y;
virtual void Foo(); thr b1
virtual void Baz();
¥ X thr
A a1; X
A 02; a2 y
i vptr
38
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