Scanner

Ronghui Gu
Fall 2022

Columbia University

* Course website: https://verigu.github.io/4115Fall2022/
** These slides are borrowed from Prof. Edwards.


https://verigu.github.io/4115Fall2022/

The Big Picture



The First Question

How do we describe/construct a program?



Use continuously varying values?

Very efficient, but has serious noise issues

Edison Model B Home Cylinder phonograph, 1906



The ENIAC: Programming with Spaghetti




Have one symbol per program?

Not so good when there are many, many things

Nippon Typewriter SH-280, 2268 keys



L System

Ia

tor

I
E

.

te Comb

ion: Use a Discre

Solut

Use combinations of a small number of things to represent

(

many different things.

exponentially)

ENGLISH SOUNDS




Every Human Writing System Does This

IBM Selectric (88-96)



The Second Question

How do we describe the combinations of a small number of
things.



Just List Them?

v

=« The Oxford
English
Dictionary

SECOND EDITION
Volume |
A-Bazouki

CLARENDON

Gets annoying for large numbers of combinations



Just List Them?

3 AA—AAAARAAAAAAAR

AR AR A Sudget Moring
16 WibyCr. 241.5468
AAAAA Canadian Wirk-Warehouse

AAAAAA A GBS Haiing
130 imdowne. $337139

les 5399 EgintonWe_ 6201577 AAAAAAAA
1001 Arrowkd. 1o AAARAA AR R
Serice. 4652767
4120 AARAAAARA Accid
PP — ¥ ] m;w..!m
AAA A Crtter Control e e 663221
100 Bumcrest Unionvilie. 410-6727  AAAAAAA AA Accdent
AARAA Devco Giass 4100371 Accompanying s Crmial
AAAA uulmub ] ice 1012 FinchW. 6632211
Toronto East. 422.0501
NAAR Eoveing Rardariois. - 920.6848 Service. 3239522
B Mini Storage ARAAAAAAR '

555 Tretheweyr 247.6294
9622033

A AAA A European
Mows

ers
RAAA A Jowel OF Tha Orient
AARAR Umousie Comnection

AAAAA Mature Escorts

2480 LarenceAve  285-6325
A aa Poes o ... 174
AARA A Woadbins Miovinghiior sgc,w{
ord

rocki
A Alert GlassBMirror ____ 6381989

AARAR A oy
603 Evars. 259-1578

AAAAAAAmstrong
Storage. 233-2477

AAAAAAHSL Movingastorage
Sa3bnes, 2517290
AAAA KA Middup MovingBStor
&0 Enapario, 44451
AAAAR A1 MovingBStor
7 Lahonne. 516:3536
AAAAA A Prestige Movers
705 Gldsonei 5332633
AARARA Soth Wester Otario Wil
‘04066

AAAARA S
e '3- Crockford . 285-6084

AR AeA Speedy Mo
1540 Victoriapark . 7519532
AAAAAA A Across The Wiorld Courier
425 Adelaidew. 504-0008
AARAAAA Auto Glass
Aness , 663-8676

855
AAAAAAA Calforria Dreams Escort
Service. 3233899
AAAAAAA Calfornia Dreams Massage

. . Service. 323.3899
RAAARAA Nationsl Auto Glass

62 g 5033833
ARRAAA b NghBDSy .

el e

AR RA & infore 39
AARAAAA A Autamated Door
Systems 32 utng s

AARANAAR Gafoa Beach (L
Servics. 239822

A AARBEO Door Co
1860 BoniIRd Vissaugs. 748:3667

ARAARAAAAAAC

st 253.0888
AAAAAAAAAARRT Ao

Glass. 3984585

599.3410

ampbell Van Lines
Inc 1190 MeyersideDr. 213-5660
AAAAAAAAA AAuto Glass
Hotine. 2430042
ARARAAAAAA CollnskGrelg
Lid 33 Coroner, 239.2991
AARAAAARAARA Competition Auto
Glass 223.1292
ARAAARAAA A Competition Auto
- 2330042
KAAAARAAA A Competiton Auto
“Glass. $10.7693
AAAAAAAAAA International
. 9296848
AAAAAAAAAA Jewel DatingiEicort

AR
AAARAAAAAANarketing
AAAAARAARA Hothing Bt~ ¢
#
s95.1854

Class .

ARAAAAAAA AOn The Wild Side.

Female Escort Service_ 255.1320
ARARAAAARA The Good Life

21 McCaul - §79-1822

67.0574

AAAAARAARAAA

AAAAAAARAAA A Class Above
imousine 173 Danforthiv . 465-5643

1232.8 Woodbine . 423.0239
AAAAAAAAAAAAMSS

Victoria_967.7176
AAAARARAARAAA Pyles
corts. 4855333
AAAAAAAAAAAAAAA
AAAARAATI] LawrenceAvi . 256-1600
AARAKARAARARAAARARAR
AAARAAA. 6996700
AARAMARALAMRARL

ssociates
AARARARARAARAAA
ARARAR AZbaco
A enimasons 285 W egton. 287-0000
ARARRARRAAAAAAN
ARARARARAAAA Aty
s ‘Conso 242:6661
AARARARAARNAAAAAAAAA
ARARARA Abba M
Storage. 366-0237
AARARARAARARARL "
ARARARAARAA A Acc
12 Hoetton. 9640138
AKRARAARAAAAAAA
ARARAAAAAAAAAdrian The
StClai . 944-2018
AARAAARAAAAAAAAAAAAA
AR AA A Abba Aut Colisionk
Giass . 7779585
AAAAARAAA
AAAA A Amor Lock And
Safe 0E3 Yonge . 225.5588
ARAARARAAAAAAAA

it
AAAAAA ALK A A Affordabie And

Agoreasvs Defence 4950 vonges 21,7108
AARAAAAAAAA Campbel

o, 154433
ARAAAAAAAAAY lds To
- Go 158 Dynever

v 787.8038
ARAAARAARAASset
Escorts . 6221177
ARARAAAAAAAABEEOf The
929.3039

AAAAAAAAAAAAEIH!SMIQM
RoyaiYork - 2558518

AARK
A Ad 3420 FinchE _499-2144
AAAAAA
308 Miner. 209-6688

ARAA
AAARAAA
AARAL
AAAAAAAAARAAARAAAARA
jon Law

530888
AAAA Yy
AlaniAssociates 401 Bay . 3635431
ARAAARAAARARAAAARAAL

Alsmms 557
ARAAAAAAAAARAAAA
Tawing 18Canso_ 2457676

Can be reallv redundant

ARARARAAAAAAAAAAB
18 Garso.. 245-7676

AAARARAAAARAAAAR
et torage
236 NorthQueen. 620-1212

Rezz. 6525252
ARKAARAAAARAAAR fecsis

ARARAAARALAAAA L Acclont
Accompany
s 00D i seam
ARARRAAARARARAR Accden
s 3 S1CSH 442313
Auuuuuuumy;umn
‘SheppaALE.
AAAAAAAuuuum
i ocx e fnan
ARARARARRAAARAR
Buecithe's Choie. 9209390
AAAAAAAG:AAA

4 Carton. 7887820
AAAMMAAMMAACW
280 Co 4949777

s
ARAAAARAAAARARA Hegint
Meature Escorts_ 923.3333
ARARRARARARARAR
essioal pres

S msicen_soas111
ARAARARARAAAAA A SWEdt
Escoris&You, 259-3990
A RAAA AAAA AAAA AARA A
Marco 1205 Siclair#y. 651-2299
A RAAA AAAA AAAA AARA Domenic

Yool 1108 6512299

valble 465.9191
AAAAAAAARAAARRAAAA A To

Clas Escort Sevice. 461:8110

‘Apple Ruto Glass

Mo Charge Dial __ 1800 506-5665

Cardinal Custom 2 Slosri . 966-4728
uuunum« Movers. .. 693-2403

A e s

AAAARAES Movers
643 LansdowneAv. 588-1489
A Ak ARBBCCDEF Locksmith
BO Stclaie . 922:2255
AARAABCMovers inc
Scomhus 353413

ronto 748.3667

AlAlAGlme;:l
ARAKA MO | Moving ysters

555 el 2094239
A & A28 boving 565 Clesane . 1%
A A AABBBEE Locksmiths .

AR A RBC Giass. i Goncod 311548
AAAABCO Door&Window Co

1860 BonhilRd Mississauga

Toronta 748.3667

10



Scanning and Parsing

int avg (int a, int b) ...
¥
Lexical Analysis
v
Syntax Analysis
'

Semantic Analysis
T front-end

’ Intermediate Code Generation ’
'

Optimization e
'
’ Code Generation ’ back-end

'
0101110101... .




Lexical Analysis



Lexical Analysis (Scanning)

Translate a stream of characters to a stream of tokens

foo_=_a+ _bar (0,_42,_q);
EQUALS |[1D ][ PLUS |(ID](LPAREN |[NUM [ cOMMA](ID]
[ LPAREN || SEMI |

Token Lexemes Pattern

EQUALS = an equals sign
PLUS + a plus sign
ID a foo bar letter followed by letters or digits

NUM 0 42 one or more digits

12




Lexical Analysis

Goal: simplify the job of the parser and reject some wrong
programs, e.g.,

%S " IHWHS
—

is not a C program?

13



Lexical Analysis

Goal: simplify the job of the parser and reject some wrong
programs, e.g.,

%S " IHWHS
—

is not a C program?

Scanners are usually much faster than parsers.

13



Lexical Analysis

Goal: simplify the job of the parser and reject some wrong
programs, e.g.,

%S " IHWHS
—

is not a C program?
Scanners are usually much faster than parsers.

Discard as many irrelevant details as possible (e.g.,
whitespace, comments).

13



Lexical Analysis

Goal: simplify the job of the parser and reject some wrong
programs, e.g.,

%S " IHWHS
—

is not a C program?
Scanners are usually much faster than parsers.

Discard as many irrelevant details as possible (e.g.,
whitespace, comments).

Parser does not care that the identifer is
“supercalifragilisticexpialidocious.”
Parser rules are only concerned with tokens.

T It is what you type when your head hits the keyboard 13



Describing Tokens

Alphabet: A finite set of symbols
Examples: { 0,1}, { A, B, C,...,Z }, ASCIl, Unicode

14



Describing Tokens

Alphabet: A finite set of symbols
Examples: { 0,1}, { A, B, C,...,Z }, ASCIl, Unicode

String: A finite sequence of symbols from an alphabet

Examples: € (the empty string), Ronghui, a8y

14



Describing Tokens

Alphabet: A finite set of symbols
Examples: { 0,1}, { A, B, C,...,Z }, ASCIl, Unicode

String: A finite sequence of symbols from an alphabet

Examples: € (the empty string), Ronghui, a8y

Language: A set of strings over an alphabet

Examples: () (the empty language), { 1, 11, 111, 1111 }, all English
words, strings that start with a letter followed by any
sequence of letters and digits

14



Operations on Languages

Let L ={¢ wo }, M ={ man, men }

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

15



Operations on Languages

Let L ={¢ wo }, M ={ man, men }

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

LU M = {e, wo, man, men }

15



Operations on Languages

Let L ={¢ wo }, M ={ man, men }

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

LU M = {e, wo, man, men }

Kleene Closure: Zero or more concatenations

M*={efUMUMMUMMM ---=
{e, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, ... }

15



Regular Expressions over an Alphabet

A standard way to express languages for tokens.

1. eis a regular expression that denotes {¢}
2. Ifa € X, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

16



Regular Expressions over an Alphabet

A standard way to express languages for tokens.

1. eis a regular expression that denotes {¢}
2. Ifa € X, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

(r) | (s) denotes L(r)U L(s)

16



Regular Expressions over an Alphabet

A standard way to express languages for tokens.

1. eis a regular expression that denotes {¢}
2. Ifa € X, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

(r) | (s) denotes L(r)U L(s)

(r)(s) {tu:t e L(r),u € L(s)}

16



Regular Expressions over an Alphabet

A standard way to express languages for tokens.

1. eis a regular expression that denotes {¢}
2. Ifa € X, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

(r) | (s) denotes L(r)U L(s)

(r)(s) {tu:t e L(r),u € L(s)}

16



Regular Expression Examples

Y = {a,b}
Regexp. Language
alb {a,b}

(a|b)(a|b)

17



Regular Expression Examples

Y = {a,b}
Regexp. Language
alb {a,b}

(a|b)(a|b) {aa,ab,ba,bb}
(a|b)*

17



Regular Expression Examples

Y ={a,b}
Regexp. Language
alb {a,b}
(a|b)(a|b) {aa,ab,ba,bb}
(a|b)* {€,a,b,aa, ab, ba,bb, aaa, aab, aba, abd, . ..}

ala*d {a, b, ab, aab, aaab, aaaab, ...}

17



Specifying Tokens with REs

ID: letter followed by letters or digits

Typical choice: Y = ASCII characters, i.e.,

(L #.%,...,0,1,...,9, .. A, ..., Z,...,7}
letters:A\B\~--\Z[a\~-\z
digits: 0 [ 1|--- |9

identifier:

18



Specifying Tokens with REs

ID: letter followed by letters or digits

Typical choice: Y = ASCII characters, i.e.,

{0 #,8,...,0,1,...,9,...,A,...,Z,..., "}
letters:A\B\~--\Z[a\~-\z
digits: 0| 1|--- ]9

identifier: letter (letter | digit)*

18



Implementing Scanners Automatically

Regular Expressions (Rules)

’ Nondeterministic Finite Automata ’

Subset Construction

’ Deterministic Finite Automata ’

Tables

19



Nondeterministic Finite Automata

“All strings containing an
even number of 0’s and

r.n

1S

20



Nondeterministic Finite Automata

1. Set of states

Mololelo)

2. Set of input symbols X : {0,1}
3. Transition function
o:Sx%. =2
state | ¢ 0 1
A |0 {B} {C}
B 10 {4} {D}
c |0 {D} {4}
D |0 {C} {B}

4. Start state sg :

5. Set of accepting states

e () :

“All strings containing an
even number of 0’s and

r.n

1S




The Language induced by an NFA

An NFA accepts an input string z iff there is a path from the
start state to an accepting state that “spells out” z.

Show that the string “010010” is accepted.

21



The Language induced by an NFA

An NFA accepts an input string z iff there is a path from the
start state to an accepting state that “spells out” z.

Show that the string “010010” is accepted.

21



Translating REs into NFAs (Thompson'’s algorithm)

a m Symbol

22



Translating REs into NFAs (Thompson'’s algorithm)

a m Symbol
172 TQ @ Sequence

22



Translating REs into NFAs (Thompson'’s algorithm)

a m Symbol
172 TQ @ Sequence

Choice

22



Translating REs into NFAs (Thompson'’s algorithm)

a m Symbol
172 TQ @ Sequence

Choice

22



Why So Many Extra States and Transitions?

Invariant: Single start state; single end state; at most two
outgoing arcs from any state: helpful for simulation.

What if we used this simpler rule for Kleene Closure?

€

o o

€

23



Why So Many Extra States and Transitions?

Invariant: Single start state; single end state; at most two
outgoing arcs from any state: helpful for simulation.

What if we used this simpler rule for Kleene Closure?

€ €

C\< a b
—

€ €

Is this right? =



Translating REs into NFAs

Example: Translate (a | b)*abb into an NFA. Answer:

24



Translating REs into NFAs

Example: Translate (a | b)*abb into an NFA. Answer:

0“7 %@ @) %)

w6
b

Show that the string “aabb” is accepted. Answer:

24



Translating REs into NFAs

Example: Translate (a | b)*abb into an NFA. Answer:

(3) e
@/e@ﬂb

Show that the string “aabb” is accepted. Answer:
b b
OO0 OEORORO0,

24



Simulating NFAs

Problem: you must follow the “right” arcs to show that a string
is accepted. How do you know which arc is right?

25



Simulating NFAs

Problem: you must follow the “right” arcs to show that a string
is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the e-closure of the start state

2. For each character ¢,

« New states: follow all transitions labeled ¢
« Form the e-closure of the current states

3. Accept if any final state is accepting

25



Simulating an NFA: -aabb, Start

® %0510

26



Simulating an NFA: -aabb, e-closure

® %0510

27



Simulating an NFA: a-abb

[ YOU®

28



Simulating an NFA: a-abb, e-closure

29



Simulating an NFA: aa-bb

[ YOU®

30



Simulating an NFA: aa-bb, e-closure

31



Simulating an NFA: aab-b

.

32



Simulating an NFA: aab-b, e-closure

33



Simulating an NFA: aabb-

34



Simulating an NFA: aabb-, Done

35



Deterministic Finite Automata

Restricted form of NFAs:

« No state has a transition on e

« For each state s and symbol q, there is at most one edge
labeled a leaving s.

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.

36



Deterministic Finite Automata

{
type token = ELSE | ELSEIF
}

rule token =
parse "else" { ELSE }
| "elseif" { ELSEIF }

37



Deterministic Finite Automata

{
type token = ELSE | ELSEIF
}

rule token =
parse "else" { ELSE }
| "elseif" { ELSEIF }

ENgiNgiNgENgiNgUNgUig'

37



Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =
parse "if" { IF }
| ['a’-'z'] ['a’-"z" '0’-"9']* as Lit { ID(Llit)

| ['o’-"9"]+ as num { NUM(num) }

38



Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states
that appear.

Each unique state during simulation becomes a state in the
DFA.

39



The Subset Construction Algorithm

1. Create the start state of the DFA by taking the e-closure of
the start state of the NFA.
2. Perform the following for the new DFA state: For each
possible input symbol:
« Apply move to the newly-created state and the input
symbol; this will return a set of states.
« Apply the e-closure to this set of states, possibly resulting
in a new set. This set of NFA states will be a single state in
the DFA.

3. Each time we generate a new DFA state, we must apply
step 2 to it. The process is complete when applying step 2
does not yield any new states.

4. The finish states of the DFA are those which contain any

of the finish states of the NFA.
40



Subset construction for (a | b)*abb




Subset construction for (a | b)*abb




Subset construction for (a | b)*abb




Subset construction for (a | b)*abb




Subset construction for (a | b)*abb

Al



Result of subset construction for (a | b)*abb

Is this minimal?

42



Minimized result for (a | b)*abb

43



Transition Table Used In the Dragon Book

Problem: Translate (a | b)*abb into a DFA.

Solution:

D@0 %9)

NFA State DFAState a b

4l



Transition Table Used In the Dragon Book

Problem: Translate (a | b)*abb into a DFA.

Solution:

NFA State DFAState a b a

b
{o1,2,4,7} A B C 2
{1,2,3,4,6,7,8} B B D @) 3 B) 3 0)
{1,2,4,5,6,7} C B C b 3 b
{1,2,4,5,6,7,9} D B E b =(CO—(&)
{1,2,4,5,6,70} E B C b

L4



Subset Construction

An DFA can be exponentially larger than the corresponding
NFA.

n states versus 2"

Tools often try to strike a balance between the two
representations.

45



Lexical Analysis with Ocamllex



Constructing Scanners with Ocamllex

ocamllex
scanner.mll scanner.ml

(subset construction)
An example:

scanner.mll

{ open Parser }

rule token =
parse [ " "\t’ '\r’ "\n'] { token lexbuf }

[+ { PLUS }

| - { MINUS }

| e { TIMES }

| "/ { DIVIDE }

| ['o’-"9"']+ as it { LITERAL(int_of_string Lit) }
| eof { EOF }

46



Ocamllex Specifications

{
}

(* Header: verbatim OCaml code; mandatory *)

(* Definitions: optional *)
let ident = regexp
let

(* Rules: mandatory *)
rule entrypoint1 [arg1 ... argn] =
parse pattern1 { action (* OCaml code *) }
|
| patternn { action }
and entrypoint2 [arg1 ... argn]} =

and .
{
}

(* Trailer: verbatim OCaml code; optional *)

47



Patterns (In Order of Decreasing Precedence)

Pattern Meaning

@ A single character

B Any character (underline)

eof The end-of-file

"foo" A literal string

[1 5 a2 “1," “5,” or any lowercase letter
[~ 09 Any character except a digit

( pattern ) Grouping

identifier A pattern defined in the let section
pattern * Zero or more patterns

pattern + One or more patterns

pattern ? Zero or one patterns

pattern: pattern,

pattern; followed by patterns

pattern. | pattern,

Either pattern; or pattern,

pattern as id

. . . 48
Bind the matched pattern to variable id



An Example

{ type token = PLUS | IF | ID of string | NUM of int }
let letter = ['a'-"'z" 'A'-'Z"]
let digit = ['0’-"9"]

rule token =
parse [’ ' '\n’ "\t’'] { token lexbuf } (* Ignore whitespace *)

| '+" { PLUS } (* A symbol *)

| "if" { IF } (* A keyword *)

(* ldentifiers *)
| letter (letter | digit | '_")* as id { ID(id) }

(* Numeric literals *)
| digit+ as it { NUM(int_of_string Llit) }

| "/*" { comment lexbuf } (* C-style comments *)
and comment =

parse "*/" { token lexbuf } (* Return to normal scanning *)
| _ { comment lexbuf } (* Ignore other characters *)

49



Nested Comments

{ type token = PLUS | ID of string | NUM of int }

let letter = ['a’'-"z" 'A'-'2"]

let digit = ['0'-"9"]

rule token =

parse [ " "\n’ '\t’'] { token lexbuf } (* Ignore whitespace *)

| 7+ { PLUS } (* A symbol *)

| letter (letter | digit | '_’")* as id { ID(id) }
| digit+ as it { NUM(int_of_string Llit) }

| "/*" { comment o lexbuf } (* C-style comments

and comment level =
parse "*/" { if level == o then token lexbuf
else comments (level - 1) lexbuf }
| "/*" { comment (level + 1) lexbuf }
| _ { comment level lexbuf } (* Ignore other characters

*)

*)

50



Free-Format Languages

Typical style arising from scanner/parser division

Program text is a series of tokens possibly separated by
whitespace and comments, which are both ignored.

» keywords (if while)

« punctuation (, ( +)

« identifiers (foo bar)

« numbers (10 -3.14159¢}32)
« strings ("A String")

51



Free-Format Languages

Java C C++ Ct Algol Pascal

Some deviate a little (e.g., C and C++ have a separate
preprocessor)

But not all languages are free-format.

52



The Python scripting language groups with indentation

i =o0
while i < 10:

i= 0+

print i # Prints 1, 2, ..., 10
i =o0
while i < 10:

i= 0+
print i # Just prints 10

This is succinct, but can be error-prone.

How do you wrap a conditional around instructions?

53



Syntax and Language Design

Does syntax matter? Yes and no

More important is a language’s semantics—its meaning.
The syntax is aesthetic, but can be a religious issue.
But aesthetics matter to people, and can be critical.
Verbosity does matter: smaller is usually better.

Too small can be problematic: APL is a succinct language with
its own character set.

There are no APL programs, only puzzles.

54



Syntax and Language Design

Some syntax is error-prone. Classic FORTRAN example:

1,25 ! Loop header (for i = 1 to 25)
1.25 ! Assignment to variable DOsI

Trying too hard to reuse existing syntax in C++:

vector< vector<int> > foo;
vector<vector<int>> foo; // Syntax errorJ

C distinguishes > and >> as different operators.

Bjarne Stroustrup tells me they have finally fixed this.

55



	The Big Picture
	Lexical Analysis
	Lexical Analysis with Ocamllex

