
∗ Course website: https://verigu.github.io/4115Fall2022/
∗∗ These slides are borrowed from Prof. Edwards.

Semantic Analysis

Ronghui Gu
Fall 2022

Columbia University

1

https://verigu.github.io/4115Fall2022/

The Midterm

The Midterm

75 minutes

Closed book

One double-sided sheet of notes of your own devising

Anything discussed in class is fair game

Little, if any, programming

Details of OCaml/C/C++/Java syntax not required

2

Semantic Analysis

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

Optimization

Code Generation

0101110101...

front-end

middle-end

back-end

3

Static Semantic Analysis

Lexical analysis: Each token is valid?
i f i f t 3 " This " /* v a l i d Java tokens */
#a1123 /* not a token */

Syntactic analysis: Tokens appear in the correct order?
return 3 + " f " ; /* v a l i d Java syntax */
for break /* i n v a l i d syntax */

Semantic analysis: Names used correctly? Types consistent?
i n t v = 42 + 1 3 ; /* v a l i d in Java (i f v i s new) */
return 3 + " f " ; /* i n v a l i d */
return f + f (3) ; /* i n v a l i d */

4

What’s Wrong With This?

a + f(b, c)

Is a defined?

Is f defined?

Are b and c defined?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?

Scope questions Type questions

5

What’s Wrong With This?

a + f(b, c)
Is a defined?

Is f defined?

Are b and c defined?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?

Scope questions Type questions

5

What To Check

Examples from Java:

Verify names are defined (scope) and are of the right type
(type).

i n t i = 5 ;
i n t a = z ; /* Er ror : cannot f ind symbol */
i n t b = i [3] ; /* Error : array required , but i n t found */

Verify the type of each expression is consistent (type).
i n t j = i + 5 3 ;
i n t k = 3 + " hel lo " ; /* Error : incompatible types */
i n t l = k (4 2) ; /* Error : k i s not a method */
i f (" Hello ") return 5 ; /* Error : incompatible types */
St r ing s = " Hello " ;
i n t m = s ; /* Er ror : incompatible types */

6

Scope - What names are visible?

Names Bindings Objects

Obj 1

Obj 2

Obj 3

Obj 4

Name1

Name2

Name3

Name4

7

Scope

Scope: where/when a name is bound to an object

Useful for modularity: want to keep most things hidden

Scoping Visible Names Depend On
Policy

Static Textual structure of program
Names resolved by compile-time symbol tables
Faster, more common, harder to break programs

Dynamic Run-time behavior of program
Names resolved by run-time symbol tables,
e.g., walk the stack looking for names
Slower, more dynamic

8

Basic Static Scope in C, C++, Java, etc.

A name begins life where it is
declared and ends at the end
of its block.

“The scope of an identifier
declared at the head of a block
begins at the end of its
declarator, and persists to the
end of the block.”

void foo()
{

int x;

}

9

Hiding a Definition

Nested scopes can hide earlier
definitions, giving a hole.

“If an identifier is explicitly
declared at the head of a
block, including the block
constituting a function, any
declaration of the identifier
outside the block is suspended
until the end of the block.”

void foo()
{
int x;

while (a < 10) {
int x;

}

}

10

Basic Static Scope in O’Caml

A name is bound after the “in”
clause of a “let.” If the name is
re-bound, the binding takes
e�ect after the “in.”

let x = 8 in

let x = x + 1 in

Returns the pair (12, 8):
let x = 8 in
(let x = x + 2 in
x + 2),
x

11

Let Rec in O’Caml

The “rec” keyword makes a
name visible to its definition.
This only makes sense for
functions.

let rec fib i =
if i < 1 then 1 else
fib (i-1) + fib (i-2)

in
fib 5

(* Nonsensical *)
let rec x = x + 3 in

12

Static vs. Dynamic Scope

C
i n t a = 0;

i n t foo () {
return a ;

}

i n t bar () {
i n t a = 10 ;

return foo () ;
}

OCaml
l e t a = 0 in
l e t foo x = a in
l e t bar =

l e t a = 10 in
foo 0

Bash
a=0

foo ()
{

echo $a
}

bar ()
{

l o c a l a=10
foo

}

bar
echo $a

13

Static vs. Dynamic Scope

Most modern languages use static scoping.

Easier to understand, harder to break programs.

Advantage of dynamic scoping: ability to change environment.

A way to surreptitiously pass additional parameters.

14

Symbol Tables

• A symbol table is a data structure that tracks the current
bindings of identifier

• Scopes are nested: keep tracks of the
current/open/closed scopes.

• Implementation: one symbol table for each scope.

15

Symbol Tables by Example: C-style

Implementing C-style scope (during walk over AST):

• Reach a declaration: Add entry to current table
• Enter a “block”: New symbol table; point to previous
• Reach an identifier: lookup in chain of tables
• Leave a block: Local symbol table disappears

i n t x ;
i n t main () {

i n t a = 1 ;
i n t b = 1 ; {

f l o a t b = 2 ;
f o r (i n t i = 0 ; i < b ; i++) {

i n t b = i ;
. . .

}
}
b + x ;

}

x 7→ int

a 7→ int, b 7→ int

b 7→ float

i 7→ int b 7→ int

16

Symbol Tables by Example: C-style

Implementing C-style scope (during walk over AST):

• Reach a declaration: Add entry to current table

• Enter a “block”: New symbol table; point to previous
• Reach an identifier: lookup in chain of tables
• Leave a block: Local symbol table disappears

i n t x ;
i n t main () {

i n t a = 1 ;
i n t b = 1 ; {

f l o a t b = 2 ;
f o r (i n t i = 0 ; i < b ; i++) {

i n t b = i ;
. . .

}
}
b + x ;

}

x 7→ int

a 7→ int, b 7→ int

b 7→ float

i 7→ int b 7→ int

16

Symbol Tables by Example: C-style

Implementing C-style scope (during walk over AST):

• Reach a declaration: Add entry to current table
• Enter a “block”: New symbol table; point to previous

• Reach an identifier: lookup in chain of tables
• Leave a block: Local symbol table disappears

i n t x ;
i n t main () {

i n t a = 1 ;
i n t b = 1 ; {

f l o a t b = 2 ;
f o r (i n t i = 0 ; i < b ; i++) {

i n t b = i ;
. . .

}
}
b + x ;

}

x 7→ int

a 7→ int, b 7→ int

b 7→ float

i 7→ int b 7→ int

16

Symbol Tables by Example: C-style

Implementing C-style scope (during walk over AST):

• Reach a declaration: Add entry to current table
• Enter a “block”: New symbol table; point to previous

• Reach an identifier: lookup in chain of tables
• Leave a block: Local symbol table disappears

i n t x ;
i n t main () {

i n t a = 1 ;
i n t b = 1 ; {

f l o a t b = 2 ;
f o r (i n t i = 0 ; i < b ; i++) {

i n t b = i ;
. . .

}
}
b + x ;

}

x 7→ int

a 7→ int, b 7→ int

b 7→ float

i 7→ int b 7→ int

16

Symbol Tables by Example: C-style

Implementing C-style scope (during walk over AST):

• Reach a declaration: Add entry to current table
• Enter a “block”: New symbol table; point to previous

• Reach an identifier: lookup in chain of tables
• Leave a block: Local symbol table disappears

i n t x ;
i n t main () {

i n t a = 1 ;
i n t b = 1 ; {

f l o a t b = 2 ;
f o r (i n t i = 0 ; i < b ; i++) {

i n t b = i ;
. . .

}
}
b + x ;

}

x 7→ int

a 7→ int, b 7→ int

b 7→ float

i 7→ int b 7→ int

16

Symbol Tables by Example: C-style

Implementing C-style scope (during walk over AST):

• Reach a declaration: Add entry to current table
• Enter a “block”: New symbol table; point to previous
• Reach an identifier: lookup in chain of tables

• Leave a block: Local symbol table disappears

i n t x ;
i n t main () {

i n t a = 1 ;
i n t b = 1 ; {

f l o a t b = 2 ;
f o r (i n t i = 0 ; i < b ; i++) {

i n t b = i ;
. . .

}
}
b + x ;

}

x 7→ int

a 7→ int, b 7→ int

b 7→ float

i 7→ int b 7→ int

16

Symbol Tables by Example: C-style

Implementing C-style scope (during walk over AST):

• Reach a declaration: Add entry to current table
• Enter a “block”: New symbol table; point to previous
• Reach an identifier: lookup in chain of tables
• Leave a block: Local symbol table disappears

i n t x ;
i n t main () {

i n t a = 1 ;
i n t b = 1 ; {

f l o a t b = 2 ;
f o r (i n t i = 0 ; i < b ; i++) {

i n t b = i ;
. . .

}
}
b + x ;

}

x 7→ int

a 7→ int, b 7→ int

b 7→ float

i 7→ int b 7→ int

16

Types - What operations are
allowed?

Types

A restriction on the possible interpretations of a segment of
memory or other program construct.

Two uses:

Safety: avoids data being treated as
something it isn’t

Optimization: eliminates certain
runtime decisions

17

Safety - Why do we need types?

Certain operations are legal for certain types.
i n t a = 1 , b = 2 ;
return a + b ;

i n t a [1 0] , b [1 0] ;
return a + b ;

18

Optimization - Why do we need types?

C was designed for e�ciency: basic types are whatever is
most e�cient for the target processor.

On an (32-bit) ARM processor,
char c ; /* 8− b i t binary */

short d ; /* 16− b i t two ’ s−complement binary */
unsigned short d ; /* 16− b i t binary */

i n t a ; /* 32− b i t two ’ s−complement binary */
unsigned i n t b ; /* 32− b i t binary */

f l o a t f ; /* 32− b i t IEEE 754 f loa t ing −point */
double g ; /* 64− b i t IEEE 754 f loa t ing −point */

19

Misbehaving Floating-Point Numbers

1e20 + 1e-20 = 1e20

1e-20� 1e20

(1 + 9e-7) + 9e-7 6= 1 + (9e-7 + 9e-7)

9e-7� 1, so it is discarded, however, 1.8e-6 is large enough

1.00001(1.000001− 1) 6= 1.00001 · 1.000001− 1.00001 · 1

1.00001 · 1.000001 = 1.00001100001 requires too much
intermediate precision.

20

What’s Going On?

Floating-point numbers are represented using an
exponent/significand format:

1︸︷︷︸
S

10000001︸ ︷︷ ︸
8-bit exponent E

01100000000000000000000︸ ︷︷ ︸
23-bit significand M

= −1S × (1.0 + 0.M)× 2E−bias

= −1.0112 × 2129−127 = −1.375× 4 = −5.5.

What to remember:

1363.4568︸ ︷︷ ︸
represented

46353963456293︸ ︷︷ ︸
rounded

21

What’s Going On?

Results are often rounded:
1.00001000000

×1.00000100000
1.00001100001︸ ︷︷ ︸

rounded

When b ≈ −c, b+ c is small, so ab+ ac 6= a(b+ c) because
precision is lost when ab is calculated.

Moral: Be aware of floating-point number properties when
writing complex expressions.

22

Type Systems

Type Systems

• A language’s type system specifies which operations are
valid for which types.

• The goal of type checking is to ensure that operations are
used with the correct types.

• Three kinds of languages
• Statically typed: All or almost all checking of types is done

as part of compilation (C, Java)
• Dynamically typed: Almost all checking of types is done as

part of program execution (Python)
• Untyped: No type checking (machine code)

23

Statically-Typed Languages

Statically-typed: compiler can determine types.

Dynamically-typed: types determined at run time.

Is Java statically-typed?
c lass Foo {

publ ic void x () { . . . }
}

c lass Bar extends Foo {
publ ic void x () { . . . }

}

void baz (Foo f) {
f . x () ;

}

24

Strongly-typed Languages

Strongly-typed: no run-time type clashes (detected or not).

C is definitely not strongly-typed:
f l o a t g ;

union { f l o a t f ; i n t i } u ;

u . i = 3 ;

g = u . f + 3 . 1 4 1 5 9 ; /* u . f i s meaningless */

Is Java strongly-typed?

25

Type Checking and Type Inference

• Type Checking is the process of verifying fully typed
programs.

• Type Inference is the process of filling in missing type
information.

• Inference Rules: formalism for type checking and
inference.

26

Inference Rules

Inference rules have the form If Hypotheses are true, then
Conclusion is true

` Hypothesis1 ` Hypothesis2
` Conclusion

Typing rules for int:

` NUMBER : int

` expr1 : int ` expr2 : int
` expr1 OPERATOR expr2 : int

Type checking computes via reasoning
27

How To Check Expressions: Depth-first AST Walk

check: node→ typedNode

1 − 5

-

1 5

check(−)
check(1) = 1 : int
check(5) = 5 : int
int − int = int
= 1 − 5 : int

1 + " Hello "

+

1 "Hello"

check(+)
check(1) = 1 : int
check(“Hello”) = “Hello” : string
FAIL: Can’t add int and string

28

How To Check Symbols?

What is the type of a variable reference?

x is a symbol
` x :?

The local, structural rule does not carry enough information
to give x a type.

29

Solution: Type Environment

Put more information in the rules!

A type environment gives types for free variables .

E ` NUMBER : int

E(x) = T
E ` x : T

E ` expr1 : int E ` expr2 : int
E ` expr1 OPERATOR expr2 : int

30

How To Check Symbols

check: environment→ node→ typedNode

1 + a

+

1 a

check(+, E)
check(1, E) = 1 : int
check(a, E) = a : E.lookup(a) = a : int
int + int = int
= 1 + a : int

The environment provides a “symbol table” that holds
information about each in-scope symbol. 31

The Type of Types

Need an OCaml type to represent the type of something in
your language.

For MicroC, it’s simple (from ast.ml):
type typ = Int | Bool | Float | Void

For a language with integer, structures, arrays, and exceptions:
type ty = (* can ’ t c a l l i t " type" s i n c e that ’ s r e s e rved *)

Void
| Int
| Array o f ty * i n t (* type , s i z e *)
| Exception o f s t r i n g
| St ruct o f s t r i n g * ((s t r i n g * ty) array) (* name , f i e l d s *)

32

Implementing a Symbol Table and Lookup

module StringMap = Map.Make(St r ing)

type symbol_table = {
(* Var iab l e s bound in cur rent block *)
v a r i a b l e s : ty StringMap . t
(* Enc los ing scope *)
parent : symbol_table opt ion ;

}

l e t r e c f i nd_var i ab l e (scope : symbol_table) name =
try

(* Try to f i nd binding in nea r e s t b lock *)
StringMap . f i nd name scope . v a r i a b l e s

with Not_found -> (* Try look ing in outer b locks *)
match scope . parent with

Some(parent) -> f ind_var i ab l e parent name
| _ -> r a i s e Not_found

33

check: ast→ sast

Converts a raw AST to a “semantically checked AST”

Names and types resolved

AST:

type expr =
L i t e r a l o f i n t

| Id o f s t r i n g
| Ca l l o f s t r i n g * expr l i s t
| . . .

⇓

SAST:

type expr_deta i l =
SL i t e r a l o f i n t

| SId o f s t r i n g
| SCal l o f s t r i n g * sexpr l i s t
| . . .

type sexpr = expr_deta i l * ty
34

	The Midterm
	Scope - What names are visible?
	Types - What operations are allowed?
	Type Systems

