Programming Languages and Translators

Ronghui Gu
Spring 2020

Columbia University

Prof. Ronghui Gu
515 Computer Science Building
ronghui.gu@columbia.edu

Office hours: Thursdays 1 - 2 PM / by appointment

Prof. Stephen A. Edwards and Prof. Baishakhi Rey also teach 4115.
*These slides are borrowed from Prof. Edwards.

http://guronghui.com
mailto:ronghui.gu@columbia.edu

What is a Programming Language?

A programming language is a notation that a person and a
computer can both understand.

- It allows you to express what is the task to compute

- It allows a computer to execute the computation task
Every programming language has a syntax and semantics.

- Syntax: how characters combine to form a program

+ Semantics: what the program means

Components of a language: Syntax

How characters combine to form a program.

Calculate the n-th Fibonacci number.

is syntactically correct English, but isn’t a Java program.

class Foo {
public int j;
public int foo(int k) { return j + k; }

}

is syntactically correct Java, but isn't C.

Specifying Syntax

Usually done with a context-free grammar.

Typical syntax for algebraic expressions:

expr — expr
expr * expr
expr / expr
(expr)

expr — expr+expr
!
|
|
|
| digits

Components of a language: Semantics

What a well-formed program “means.”

The semantics of C says this computes the nth Fibonacci
number.

int fib (int n)
{

int a =0, b= 1,
int i

return b;

Something may be syntactically correct but semantically
nonsensical

The rock jumped through the hairy planet.

Or ambiguous

The chickens are ready to eat.

Nonsensical in Java:

class Foo {
int bar(int x) { return Foo; }
}

Ambiguous in Java:

class Bar {
public float foo() { return 0; }
public int foo() { return 0; }

}

What is a Translator?

A programming language is a notation that a person and a
computer can both understand.

- It allows you to express what is the task to compute

- It allows a computer to execute the computation task

A translator translates what you express to what a computer
can execute.

What is a Translator?

C Assembly Bytes
int ged(int a, int b) ged: pushl %ebp 55
{ movl %esp, %ebp 89E5
while (a != b) { movl 8(%ebp), %eax 8B4508
if (a > b) movl 12(%ebp), %edx 8B550C
a -= b; cmpl %edx, %eax 39D0
else b -= a; je L9 740D
} .L7: cmpl %edx, %eax 39D0
return a; jle L5 TE0S
} subl %edx, %eax 29D0
.L2: cmpl %edx, %eax 39D0
jne L7 75F6
.L9: leave C9
ret C3
.L5: subl %eax, %edx 29C2
jmp L2 EBF6

10

Course Structure

Course Structure

Course home page:
https://www.cs.columbia.edu/ rgu/courses/4115/spring2019

26 Lectures: Mondays and Wednesdays, 2:40 - 3:55 PM
Jan 22 - May 4
451 CSB

Team project report May 13
Midterm Exam Mar 11
Final Exam (in class) May 4

3 Assignments

"

https://www.cs.columbia.edu/~rgu/courses/4115/spring2019

Assignments and Grading

40% Team Programming Project
20% Midterm Exam
20% Final Exam (cumulative)

20% Three individual homework assignments

Team project is most important, but most students do well on
it. Grades for tests often vary more.

12

Recommended Text

' Compilers
Al.fred V. Ah O, MO nica S. La m, Principles, Techniques, & Tools

Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques,
and Tools.

Addison-Wesley, 2006. ik
Second Edition. ; A Alfred V. Aho

Monica S. Lam
Ravi Sethi
Jeffrey D. Ullman

13

COMS W3157 Advanced Programming

- How to work on a large software system in a team
- Makefiles, version control, test suites

- Testing will be as important as coding
COMS W3261 Computer Science Theory

- Regular languages and expressions
- Context-free grammars
« Finite automata (NFAs and DFAs)

14

Collaboration

Read the CS Department’s Academic Honesty Policy:
https://www.cs.columbia.edu/education/honesty/

Collaborate with your team on the project.

Do your homework by yourself.

+ OK: Discussing lecture content, OCaml features
« Not OK: Solving a homework problem with classmates

+ Not OK: Posting any homework questions or solutions

Don't be a cheater (e.g., copy from each other)

15

https://www.cs.columbia.edu/education/honesty/

The Team Project

The Team Project

Bid over a list of project ideas of language design and
compiler implementation.

Four deliverables:

-

. A proposal describing your plan (due Feb 26)

2. A milestone: a minimum viable product (due Mar 30)
3. A compiler component, written in OCaml (due May 13)
4. Afinal project report (due May 13)

16

Teams

Immediately start forming four-person teams (3 to 5)

Each teach member should participate in design, coding,
testing, and documentation

Role

Responsibilities

Manager
Language Guru

System Architect

Tester

Timely completion of deliverables
Language design

Compiler architecture,
development environment

Test plan, test suites

17

Teams

START EARLY!

How Do You Work In a Team?

+ Address problems sooner rather than later
If you think your teammate’s a flake, you're right

« Complain to me or your TA as early as possible
Alerting me a day before the project is due isn’t helpful

- Not every member of a team will get the same grade
Remind your slacking teammates of this early and often

19

First Three Tasks

1. Decide who you will work with
You'll be stuck with them for the term; choose wisely

2. Assign a role to each member

3. Select a weekly meeting time
Harder than you might think

20

Project Proposal

- Describe the project that you plan to implement.
- Describe roles of each team member.
« Describe the road map.

- 1-2 pages

21

Final Report Sections

Section

Author

Introduction
Reference Manual
Language Evolution
Translator Architecture
Test plan and scripts

Conclusions

Team

Team

Language Guru
System Architect
Tester

Team

22

Project Due Dates

Proposal Feb 26 soon
MVP Mar 30

Final Report and Code Submission May 13

23

Great Moments in Evolution

Assembly Language

Before: numbers After: Symbols

55 ged: pushl %ebp

89E5 movl %esp, %ebp
8B4508 movl 8(%ebp), %eax
8B550C movl 12(%ebp), %edx
39D0 cmpl %edx, Y%eax
740D je L9

39D0 L7: empl %edx, Y%eax
7E08 jle L5

29D0 subl %edx, %eax
39D0 L2: cmpl %edx, %eax
75F6 ine L7

C9 .L9: leave

C3 ret

29C2 .L5: subl %eax, %edx
EBF6 jmp .L2

24

FORTRAN

After: Expressions, control-flow

Before

ged: pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
movl 12(%ebp), %edx
cmpl %edx, %eax

je L9
.L7: cmpl %edx, %eax
jle .L5

subl %edx, %eax
L2: cmpl %edx, Y%eax
jne L7
.L9: leave
ret
.L5: subl %eax, %edx
jmp L2

10

20

if (a .EQ.
if (a .LT.
8 = &
else
b=5>,
endif
goto 10
end

b) goto 20
b) then

25

¥ Backus, IBM, 1956

Imperative language for
science and engineering

£ First compiled language 10 f (a . b) goto 20
f (a LT b) then
Fixed format punch cards a=a-b
else
Arithmetic expressions, If, Do, b="> - a
and Goto statements endif
i goto 10
Scalar and array types AU end

" Limited string support

~ Still common in
. high-performance computing

Inspired most modern
languages, especially BASIC

COBOL

Added type declarations, record types, file manipulation

data division .
file section .
* describe the input file
fd employee-file-in
label records standard
block contains 5 records
record contains 31 characters
data record is employee-record-in.
01 employee-record-in.

02 employee-name-in pic x(20).

02 employee-rate-in pic 9(3)v99.
02 employee-hours-in pic 9(3)v99.
02 line-feed-in pic x(1).

English-like syntax: 300 reserved words

Grace Hopper et al. 2

LISP, Scheme, Common LISP

Functional, high-level languages

(defun append (11 12)
(if (null 11)
12

(cons (first 11) (append (rest 11) 12))))]

27

LISP, Scheme, Common LISP

McCarthy, MIT, 1958

(() Functional: recursive, list-focused
defun append (11 12 .
(if (null 11) functions

12

(cons (first 11) Semantics from Church’s Lambda

Calculus

Simple, heavily parenthesized
S-expression syntax

Dynamically typed
Automatic garbage collection

Originally for Al applications

Dialects: Scheme and Common Lisp

27

APL

Powerful operators, interactive, custom character set

Z+GAUTSSREAND NG E;F;M;P; 0GR

AaReturns o random numbers having a Gaussian normal distribution
A [wWwith mean 0 and variance 1) Uses the Box-Muller method.

A See Numerical Recipes in C, pg. 283.

f

Z+10

M+T1+2%31 A largest integer
[7] L1:0+N-pZ f how many more we need

+(0£0) /L2 A oquit if none

Qe 1. 3=0Q22 f approx num points needed
[10] Pe71+(2+M-1)="1+7(0,2)pM a random points in -1 to 1 square
[11] R++/FxP A distance from origin sgquared

[12] B+ (R#£D)ARCL
[13] R+B/R ¢ FP+B#P A points within unit circle
[14] F+(72x(8R)+R1%.5

[158] EZ+E,,P=F,[1.5]F

[18] =~L1

[17] LZ:2+NtZ 3
[18] m ArchDate: 12-16-1997 16:20:23.170 |

“Emoticons for Mathematicians”

Source: Jim Weigang, http://www.chilton.com/~jimw/gsrand.html

At right: Datamedia APL Keyboard

Z+GAUTSSEAND NG E;F;MP; ;051
AReturns o random number:
A (with mean 0 and varia:
A See Numerical Recipes
f

Z+10

MeT14+2%31 A largest
Ll :Q+«N-p= & how mat
+(0£0) /L2 A oquit i
Qe 1. 3=0Q22 A approx

P71+ (23M-1)=71+7 (0, 2)pM
Re++/P=P A distand
B+ (R#£0)AR<1
E+B/RE ¢ P+B#fFP
Fr("2=(#R13R1%.5
Z+Z,,P=F,[1.5]F
+L1

L2 :Z+«NtZ

f ArchDate:

A points

12/16/1997 1

“Emoticons for Mathematiciar

Source: Jim Weigang, http://www.chilton.com/~jim

At right: Datamedia APL Keyboard

Iverson, IBM, 1960
Imperative, matrix-centric

E.g., perform an operation on each
element of a vector

Uses own specialized character set
Concise, effectively cryptic
Primarily symbols instead of words
Dynamically typed

0dd left-to-right evaluation policy

Useful for statistics, other
matrix-oriented anonlications

28

Algol, Pascal, Clu, Modula, Ada

Imperative, block-structured language, formal syntax
definition, structured programming

PROC insert = (INT e, REF TREE t)VOID:
NB inserts in t as a side effect
IF TREE(t) IS NIL THEN
t := HEAP NODE := (e, TREE(NIL), TREE(NIL))
ELIF e < e OF t THEN insert(e, 1 OF t)
ELIF e¢ > e OF t THEN insert (e, r OF t)
FI;

PROC trav = (INT switch, TREE t, SCANNER continue ,
alternative)VOID:
traverse the root node and right sub-tree of t only.
IF t IS NIL THEN continue (switch, alternative)
ELIF e OF t <= switch THEN
print (e OF t);
traverse (switch, r OF t, continue, alternative)
ELSE e OF t switch
PROC defer = (INT sw, SCANNER alt)VOID: 29
trav (sw, t, continue, alt);

SNOBOL, Icon

String-processing languages

LETTER = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ$#@’

SP.CH = "4-,=*()/& "
SCOTA — SP.CH
SCOTA & —

Q —

QLIT = Q FENCE BREAK(Q) Q

ELEM = QLIT | 'L’ Q | ANY(SCOTA) | BREAK(SCOTA) | REM
F3 — ARBNO(ELEM FENCE)

B = (SPAN(’’) | RPOS(0)) FENCE

F1 = BREAK(’) | REM
F2 = Fl
CAOP = ('LCL’ | 'SET’) ANY('ABC’) |

+ CATF’ | AGO’ | ACTR’ | ’ANOP’
ATTR = ANY('TLSIKN’)
ELEMC = ’(’ FENCE *F3C’)’ | ATTR Q | ELEM
F3C = ARBNO(ELEMC FENCE)
ASM360 = F1.NAME B
+ (CAOP . OPERATION B F3C . OPERAND |
+ F2.OPERATION B F3.OPERAND) 30
1~ R REM COMMENT

BASIC

Programming for the masses

10 PRINT "GUESS A NUMBER BETWEEN ONE AND TEN"
20 INPUT AS$

30 IF A$ < "5" THEN GOTO 60

40 PRINT "GOOD JOB, YOU GUESSED IT"

50 GOTO 100

60 PRINT "YOU ARE WRONG. TRY AGAIN"

70 GOTO 10

100 END

Invented at Dartmouth by

John George Kemeny and Thomas
Eugene Kurtz. Started the whole
Bill Gates/ Microsoft thing.

31

Simula, Smalltalk, C++, Java, C#

The object-oriented philosophy

class Shape(x, y); integer x; integer y;
virtual: procedure draw;
begin
comment — get the x & y coordinates —;
integer procedure getX;

getX 1= x;
integer procedure getY;
getY = y;

comment — set the x & y coordinates —;
integer procedure setX(newx); integer newx;
X = Newx;
integer procedure setY (newy); integer newy;
y = newy;
end Shape;

32

99 Bottles of Beer in Java

class Bottles {
public static void main(String args|[]) {
String s = "s"
for (int beers=99; beers >-1;) {
System.out.print (beers+" bottle"+s+" of beer on the we
System.out.println (beers + " bottle" + s + " of beer,
if (beers==0) {
System.out.print ("Go to the store, buy some more, ")
System.out.println ("99 bottles of beer on the wall.\
System . exit (0);

} else

System.out.print ("Take one down, pass it around, ");
s = (--beers I 1)?nn:usu;
System.out.println (beers+" bottle"+s+" of beer on the

Sean Russell, http://www.99-bottles-of-beer.net/language-java-4.html
33

http://www.99-bottles-of-beer.net/language-java-4.html

99 Bottles of Beer in Java

class Bottles {

public static void maj
o I

String s = "s"; Gosling et al., Sun, 1991
for (int beers=99; I
System.out.print (I |mperative, object-oriented, £
System .out.println
if (beers——0) { threaded
System.out.print
System .out . print
System. exit (0);
} else
System.out.print Aytomatic garbage collection ;
s = (--beers =— 1)
System.out. printIn Architecturally neutral

Based on C++, C, Algol, etc.)
Statically typed

} Defined on a virtual machine (Java
Bytecode) B

Sean Russell, http://www.99-bottles-of-beer.net/language-java-4.html
33

http://www.99-bottles-of-beer.net/language-java-4.html

Efficiency for systems programming

int ged(int a, int b)

{

while (a
if (a >
else b -

}

return a;

b) {
) a -= b;

(S

a;

}

34

Dennis Ritchie, Bell Labs, 1969

Procedural, imperative
Based on Algol, BCPL

Statically typed; liberal conversion
int ged(int a, int b) policies

{
while (a != b) { Harmonizes with processor
if (a > b) a -= b; .
T architecture
else b -= a;
} ing:
N For'systems programming: unsafe by
} design

Remains language of choice for
operating systems

34

ML, Miranda, Haskell

Functional languages with types and syntax

structure RevStack = struct
type ’a stack = ’a list
exception Empty
val empty = []
fun isEmpty (s:’a stack):bool

(case s
of [] = true
| => false)
fun top (s:’a stack):
(case s
of [] => raise Empty
| x::x8 = x)
fun pop (s:’a stack):’a stack
(case s

of [] => raise Empty
| x::xs8 => xs)
fun push (s:’a stack ,x: ’a):’a stack = x::s
fun rev (s:’a stack):’a stack rev (s)
end £

99 Bottles of Beer in Haskell

bottles :: Int -> String
bottles n
| n = 0 = "no more bottles"
| n=— 1= "1 bottle"
| n > 1 = show n ++ " bottles"
verse :: Int -> String
verse n
n =— 0 = "No more bottles of beer on the wall, "
++ "no more bottles of beer.\n"
++ "Go to the store and buy some more, "
++ "99 bottles of beer on the wall."
n >0 = bottles n ++ " of beer on the wall, "
++ bottles n
++ " of beer.\n"
++ "Take one down and pass it around, "
++ bottles (n-1) ++ " of beer on the wall.\n"
main = mapM (putStrLn . verse) [99,98..0]

36
Simon lohansson.

http://www.99-bottles-of-beer.net/language-haskell-1613.html

99 Bottles of Beer in Haskell

bottles :: Int -> String

bottles n Peyton Jones et al., 1990
| n = 0 = "no more b .
| n— 1 = "1 bottle" Functional
| n > 1 = show n ++ " .
Pure: no side-effects
verse :: Int -> Strin)
verse n ® Lazy: computation only on demand;

n — 0 = "No more bc infinite data structures
++ "no more
++ "Go to t Statically typed; types inferred
++ "99 bot

n >0 = bottles n + Algebraic data types, pattern

++ bottles matching, lists, strings
— " of bee

i LT?;T °r Great for compilers, domain-specific
o €es
languages, type system research

Related to ML, OCaml

main = mapM (putStr

Simon lohansson.

http://www.99-bottles-of-beer.net/language-haskell-1613.html

sh, awk, perl, tcl, python, php

Scripting languages: glue for binding the universe together

class () {
classname=‘echo "$1" | sed -n ’'1 s/ *:.*§//p’¢
parent=‘echo "$1" | sed -n ’1 s/~.*: *//p’¢
hppbody=‘echo "$1" | sed -n ’2,$p’ ¢

forwarddefs="$forwarddefs
class $classname ;"

if (echo $hppbody | grep -q "$classname()"); then
defaultconstructor=

else
defaultconstructor="$classname () {}"

fi

37

99 Bottles of Beer in AWK

BEGIN {
for(i = 99; i >= 0; i--) {
print ubottle(i), "on the wall,", lbottle(i) "."
print action (i), lbottle(inext(i)), "on the wall."
print

}
}
function ubottle(n) {

return sprintf("%s bottle%s of beer", n?n:"No more", n-17
}

function lbottle(n) {
return sprintf("%s bottle%s of beer", n?n:"no more", n-17
}

function action(n) {
return sprintf("%s", n ? "Take one down and pass it aroun
"Go to the store and buy some mc
}
function inext(n) {
return n ? n - 1 : 99
}

http://www.99-bottles-of-beer.net/language-awk-1623.html

99 Bottles of Beer in AWK

BEGIN {
for(i = 99; i >= 0; i--) {
print ubottle(i), "on the wall,", lbottle(i) "."
print action(i), lbottle(inext(i)), "on the wall."
print
}
} Aho, Weinberger, and Kernighan, Bell
function ubottle(n) {
return sprintf("%s be Labs, 1977 ?
iunction Ibottle (n) { Interpreted domain-specific
return sprintf("%s bc scripting language for text ?
} processing

function action(n) {
return sprintf("%s", pattern-action statements matched |°
) against input lines

function inext(n) {
n -1

returm m % gc C-inspired syntax
}

Automatic garbage collection 38|

http://www.99-bottles-of-beer.net/language-awk-1623.html

AWK (bottled version)

Wilhelm Weske,
http://www.99-bottles-of-
beer.net/language-awk-1910.html

SESEEL A
"no mo'"\
"rexxN "\
||O mor"\
"exsxx "\
||Take ”\

"one dow"\

"n and pas"\

"s it around"\
", xGo to the "\
"store and buy s"\
"ome more, x bot"\
"tlex of beerx o"\

"n the wall" | s,\
"x"); for(1i=99 ;\
i>=0; i--){ s[0]=\
s[2] =1 ; print \
s[2 + 1(i) | s[8]\
sla+ 1(i-1)] s[9]\
S[10]", " s [1(31)]\
s[8] s[4+ I(i-1)]\
s[9]".";1i7s[0]--:\
s[0] = 99; print \
s[6+1i]s[!(s[0])]\
8] si4 +1G-2)])

39

http://www.99-bottles-of-beer.net/language-awk-1910.html
http://www.99-bottles-of-beer.net/language-awk-1910.html

99 Bottles of Beer in Python

for quant in range(99, 0, -1):
if quant > 1:
print quant, "bottles of beer on the wall,", \
quant, "bottles of beer."
if quant > 2:
suffix = str(quant - 1) + " bottles of beer on the

else:
suffix = "1 bottle of beer on the wall."
elif quant = 1:
print "1 bottle of beer on the wall, 1 bottle of beer.
suffix = "no more beer on the wall!"
print "Take one down, pass it around,", suffix
print ""

Gerold Penz,
http://www.99-bottles-of-beer.net/language-python-808.html

40

http://www.99-bottles-of-beer.net/language-python-808.html

99 Bottles of Beer in Python

for quant in range(99, 0, -1):
if quant > 1:
print quant, "bot:
quant, "bott Guido van Rossum, 1989
if quant > 2:
suffix — str(qu Object-oriented, imperative

else:
suffix — "1 bo General-purpose scripting language
elif quant — 1: . .. X
print "1 bottle of Indentation indicates grouping
suffix = "no more .
print "Take one down, Dynamlcally typed
print nn

Automatic garbage collection

Gerold Penz,
http://www.99-bottles-of-beer.net/language-python-808.html

40

http://www.99-bottles-of-beer.net/language-python-808.html

99 Bottles of Beer in FORTH

.bottles (n -- n-1)

dup 1 = IF ." One bottle of beer on the wall," CR
." One bottle of beer," CR
." Take it down,"

ELSE dup . ." bottles of beer on the wall," CR
dup . ." bottles of beer," CR
." Take one down,"

THEN
CR
." Pass it around," CR
1-
?dup IF dup 1 = IF ." One bottle of beer on the wall;"

ELSE dup . ." bottles of beer on the wall;"

THEN

ELSE ." No more bottles of beer on the wall."

THEN
CR
nbottles (n --)

BEGIN .bottles 7?dup NOT UNTIL ;
44

00 nbottles

http://www.99-bottles-of-beer.net/language-forth-263.html

99 Bottles of Beer in FORTH

.bottles (n -- n-1)

dup 1 = IF ." One b«
" One b¢ Moore, NRAO, 1973
" Take i . .
ELSE dup . ." bottle Stack-based imperative language
dup . ." bottle
1 Take one dow Trivial, RPN-inspired grammar
THEN .]
CR Easily becomes cryptic
." Pass it around," C
1- Untyped

?dup IF dup 1 = IF . .
ELSE dup . Low-level, very lightweight

AT e e Highly extenS|bl.e. easy to make
THEN programs compile themselves
CR
Used in some firmware boot systems

nbottles (n --) (Apple,IBM, Sun)
BEGIN . bottles ?dup

Inspired the PostScript language for”'
00 nbottles B N

http://www.99-bottles-of-beer.net/language-forth-263.html

The Whitespace Language

Edwin Brady and Chris Morris, April
1st, 2003

Imperative, stack-based language

Space, Tab, and Line Feed characters
only

Number literals in binary: Space=0,
Tab=1, LF=end

Less-than-programmer-friendly
syntax; reduces toner consumption

v

Andrew Kemp, http://compsoc.dur.ac.uk/whitespace/

42

http://compsoc.dur.ac.uk/whitespace/

1
z2
3
45
2
&
T
g
9
a
1
2
2
4
5
=
I
g
=)
5]

T b bt et s et et i

Visicalc on the Apple II, c. 1979
43

Database queries

CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_ INCREMENT,

style ENUM('t-shirt’, ’polo’, ’dress’) NOT NULL,
color ENUM('red’, ’blue’, ’white’, ’black’) NOT NULL,
owner SMALLINT UNSIGNED NOT NULL
REFERENCES person (id),
PRIMARY KEY (id)
)5
INSERT INTO shirt VALUES
(NULL, ’polo’, ’blue’, LAST INSERT ID()),
*, ’white’, LAST_ INSERT ID())
(

(NULL, ’dress’,
"blue’, LAST INSERT ID()

(NULL, ’t-shirt’,);

L4

CREATE TABLE

shirt (

id SMALLINT UNSIGNEI
style ENUM(’t-shirt
color ENUM(’red’, ~’
owner SMALLINT UNSIC

REFERENCES pe
PRIMARY KEY (id)
)5

INSERT INTO shirt VALUE

(NULL, ’polo’, ’blue’,
(NULL, ’dress’, ’white’
(NULL, ’t-shirt’, ’blue

Chamberlin and Boyce, IBM, 1974

Declarative language for databases

Semantics based on the relational
model

Queries on tables: select with
predicates, joining, aggregating

Database query optimization:
declaration to procedure

44

Logic Language

witch (X) <= burns(X), female(X).
burns (X) <= wooden (X).
wooden (X) <= floats (X).
floats (X) <= sameweight (duck, X).

female(girl). {by observation}
sameweight (duck, girl). {by experiment }

? witch(girl).

45

witch (X) <= burns(X), female(X).

burns (X) <= wooden(X). |

wooden (X) <= floats (X).

floats (X) <= sameweight Alain Colmerauer et al., 1972

female (girl). Logic programming language
sameweight (duck, girl). .
Programs are relations: facts and

? witch(girl). rules

Program execution consists of trying
to satisfy queries

Designed for natural language
processing, expert systems, and
theorem proving

	Course Structure
	The Team Project
	Great Moments in Evolution

