
∗ Course website: https://www.cs.columbia.edu/ rgu/courses/4115/spring2019
∗∗ These slides are borrowed from Prof. Edwards.

Basic Elements of Programming Languages

Ronghui Gu
Spring 2020

Columbia University

1

https://www.cs.columbia.edu/~rgu/courses/4115/spring2019

What is a Programming Language?

A programming language is a notation that a person and a
computer can both understand.

• It allows you to express what is the task to compute
• It allows a computer to execute the computation task

2

Language Speci�cations

How to De�ne a Language

When designing a language, it’s a good idea to start by
sketching forms that you want to appear in your language as
well as forms you do not want to appear.

i n t avg (i n t a , i n t b)
{

re turn (a + b) / 2 ;
}

Examples

a i n t vg (i n t a ,
{

re turn (a ; + b)
{ {

Non-Examples

3

How to De�ne a Language

• An o�cial documents, with informal descriptions.
• An o�cial documents, with formal descriptions.
• A reference implementation, e.g., a compiler.

Some language de�nitions are sanctioned by an o�cial
standards organization, e.g., C11 (ISO/IEC 9899:2011).

i n t compare ()
{

i n t a [1 0] , b [1 0] ;
i f (a > b)

re turn true ;
r e turn f a l s e ;

}

4

Aspects of Language Speci�cations

Syntax Semantics Pragmatics

• Syntax: how characters combine to form a program.
• Semantics: what the program means.
• Pragmatics: common programming idioms; programming
environments; the standard library; ecosystems.

5

Syntax

Syntax is divided into:

• Microsyntax: speci�es how the characters in the source
code stream are grouped into tokens.

• Abstract syntax: speci�es how the tokens are grouped
into phrases, e.g., expressions, statements, etc.

6

Microsytax

Source program is just a sequence of characters.

i n t avg (i n t a , i n t b)
{

re turn (a + b) / 2 ;
}

i n t SP a v g (i n t SP a , SP i n t SP b) NL
{ NL
SP SP r e t u r n SP (a SP + SP b) SP / SP 2 ; NL
} NL

7

Microsytax

i n t avg (i n t a , i n t b)
{

re turn (a + b) / 2 ;
}

Token Lexemes Pattern (as regular expressions)
ID avg, a, b letter followed by letters or digits
KEYWORD int, return letters
NUMBER 2 digits
OPERATOR +, / +, /
PUNCTUATION ;,(,),{,}, ;,(,),{,},

int avg (int a , int b) { return (a + b

) / 2 ; }

8

Lexical Analysis Gives Tokens

i n t avg (i n t a , i n t b)
{

re turn (a + b) / 2 ;
}

int avg (int a , int b) { return (a + b

) / 2 ; }

• Throw errors when failing to create tokens: malformed
numbers (e.g., 23f465#g) or invalid characters (such as
non-ASCII characters in C).

9

Abstract Syntax

Abstract Syntax can be de�ned using Context Free Grammar.

expr :
expr OPERATOR expr

| (expr)
| NUMBER

Expression (a+ b)/2 can be parsed into an AST:

/

+

a b

2

10

Abstract Syntax

Abstract Syntax can be de�ned using Context Free Grammar.

expr :
expr OPERATOR expr

| (expr)
| NUMBER

Ambiguous! What about a+ b/2 ?

/

+

a b

2

+

a /

b 2

11

Syntax Analysis Gives an Abstract Syntax Tree

func

int avg args

arg

int a

arg

int b

return

/

+

a b

2

i n t avg (i n t a , i n t b)
{

re turn (a + b) / 2 ;
}

• Syntax analysis will throw
errors if “}” is missing. Lexical
analysis will not.

12

Semantics

• Static Semantics: deals with legality rules—things you can
check before running the code (compile time), e.g., type,
scope, for some languages.

• Dynamic Semantics: deals with the execution behavior;
things that can only be known at runtime, e.g., value.

13

Static Semantics

We can use inference rules to de�ne semantics, e.g., type:

NUMBER : int
expr : int
(expr) : int

expr1 : int expr2 : int
expr1 OPERATOR expr2 : int

14

Semantic Analysis: Resolve Symbols; Verify Types

Symbol Table

int a

int b

func

int avg args

arg

int a

arg

int b

return

/

+

a b

2

15

Dynamic Semantics

We can use inference rules to de�ne semantics, e.g., value:

eval(NUMBER) = NUMBER
eval(expr) = n

eval((expr)) = n

eval(expr1) = n1 eval(expr2) = n2 (n1 + n2) = n

eval(expr1 + expr2) = n

16

Dynamic Semantics

Consider the integer range:

wrap(NUMBER) = n

eval(NUMBER) = n

eval(expr) = n

eval((expr)) = n

eval(expr1) = n1 eval(expr2) = n2 wrap(n1 + n2) = n

eval(expr1 + expr2) = n

17

Programming Paradigms

Programming Paradigms

A programming paradigm is a style, or “way,” of programming.
Some languages make it easy to write in some paradigms but
not others.

18

Imperative Programming

An imperative program speci�es how a computation is to be
done: a sequence of statements that update state.

r e s u l t = []
i = 0
numStu = len (s tudents)

s t a r t :
i f i >= numStu goto f i n i s h e d
name = students [i]
nameLength = len (name)
i f nameLength <= 5 goto nextOne
addToList (r e su l t , name)

nextOne :
i = i + 1
goto s t a r t

f i n i s h e d :
re turn r e s u l t

19

Structured Programming

A kind of imperative programming with clean, goto-free,
nested control structures. Go To Statement Considered
Harmful by Dijkstra.

r e s u l t = []
f o r i in range (l en (s tudents)) :

name = students [i]
i f l en (name) > 5 :

addToList (r e su l t , name)
p r i n t (r e s u l t)

20

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

Procedural Programming

Imperative programming with procedure calls.

de f f i l t e r L i s t (s tudents) :
r e s u l t = []
f o r name in s tudents :

i f l en (name) > 5 :
addToList (r e su l t , name)

re turn r e s u l t

p r i n t (f i l t e r L i s t (s tudents))

21

Object-Oriented Programming

An object-oriented program does its computation with
interacting objects.

c l a s s Student :
de f __init__(s e l f , name) :

s e l f . name = name
s e l f . department = "CS"

de f f i l t e r L i s t (s tudents) :
r e s u l t = []
f o r student in s tudents :

i f s tudent . name .__len__() > 5 :
r e s u l t . append (student . name)

re turn r e s u l t

p r i n t (f i l t e r L i s t (s tudents))
22

Declarative Programming

A declarative program speci�es what computation is to be
done. It expresses the logic of a computation without
describing its control �ow.

s e l e c t name
from students
where l ength (name) > 5

23

Functional Programming

A functional program treats computation as the evaluation of
mathematical functions and avoids side e�ects.

de f isNameLong (name) :
r e turn l en (name) > 5

pr in t (
l i s t (

f i l t e r (isNameLong , s tudents)))

24

Functional Programming

Using lambda calculus:

pr in t (
l i s t (
f i l t e r (lambda name : l en (name) , s tudents)))

25

Functional Programming

Using function composition:

compose (pr int , l i s t , f i l t e r *(lambda name : l en (name) > 5))
(s tudents)

∗A variant of the built-in �lter.

26

	Language Specifications
	Programming Paradigms

