
∗ Course website: https://www.cs.columbia.edu/ rgu/courses/4115/spring2019

IR Optimization

Ronghui Gu
Spring 2020

Columbia University

1

https://www.cs.columbia.edu/~rgu/courses/4115/spring2019


IR Optimization

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

IR Optimization

Code Generation

0101110101...

front-end

middle-end

back-end

2



IR Optimization

Goal

• Runtime
• Memory usage
• Power Consumption

Sources?

3



Optimizations from IR Generation

C code:
int x;
int y;
bool b1;
bool b2;
bool b3;
b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

Three-Address:
_t0 = x + x;
_t1 = y ;
b1 = _t0 < _t1 ;
_t2 = x + x;
_t3 = y ;
b2 = _t2 == _t3;
_t4 = x + x;
_t5 = y ;
b3 = _t5 < _t4;

4



Optimizations from IR Generation

C code:
int x;
int y;
bool b1;
bool b2;
bool b3;
b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

Three-Address:
_t0 = x + x;
_t1 = y ;
b1 = _t0 < _t1 ;
_t2 = x + x;
_t3 = y;
b2 = _t2 == _t3;
_t4 = x + x;
_t5 = y;
b3 = _t5 < _t4;

5



Optimizations from IR Generation

C code:
int x;
int y;
bool b1;
bool b2;
bool b3;
b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

Three-Address:
_t0 = x + x;
_t1 = y ;
b1 = _t0 < _t1 ;

b2 = _t0 == _t1;

b3 = _t0 < _t1;

6



Optimizations from Lazy Coders

C code:
while (x < y + z) {

x = x - y;
}

Three-Address:
_L0:

_t0 = y + z;
_t1 = x < _t0;
bz _L1 _t1 ;
x = x − y;
jmp _L0;

_L1 :

7



Optimizations from Lazy Coders

C code:
while (x < y + z) {

x = x - y;
}

Three-Address:
_L0:

_t0 = y + z;
_t1 = x < _t0;
bz _L1 _t1 ;
x = x − y;
jmp _L0;

_L1 :

8



Optimizations from Lazy Coders

C code:
while (x < y + z) {

x = x - y;
}

Three-Address:
_t0 = y + z;

_L0:
_t1 = x < _t0;
bz _L1 _t1 ;
x = x − y;
jmp _L0;

_L1 :

9



IR Optimization Discussion

Optimal? Undecidable!

Soundness: semantics-preserving

IR optimization v.s. code optimization:

x * 0.5 ⇒ x » 1

Local optimization v.s. global optimization

10



Local Optimization

int main() {
int y;
int z;
y = 137;
if (x == 0)
z = y;

else
x = y;

}

START:

t0 = 137;
y = t0;
bz L0 x;

t1 = y;
z = t1;

t2 = y;
x = t2;

END:

11



Local Optimization

int main() {
int y;
int z;
y = 137;
if (x == 0)
z = y;

else
x = y;

}

START:

t0 = 137;
y = t0;
bz L0 x;

t1 = y;
z = t1;

t2 = y;
x = t2;

END:

12



Local Optimization

int main() {
int y;
int z;
y = 137;
if (x == 0)
z = y;

else
x = y;

}

START:

y = 137;
bz L0 x;

t1 = y;
z = t1;

t2 = y;
x = t2;

END:

13



Local Optimization

int main() {
int y;
int z;
y = 137;
if (x == 0)
z = y;

else
x = y;

}

START:

y = 137;
bz L0 x;

z =y; x = y;

END:

14



Global Optimization

int main() {
int y;
int z;
y = 137;
if (x == 0)
z = y;

else
x = y;

}

START:

y = 137;
IFZ x Goto L0;

z =y; x = y;

END:

15



Global Optimization

int main() {
int y;
int z;
y = 137;
if (x == 0)
z = y;

else
x = y;

}

START:

IFZ x Goto L0;

z =137; x = 137;

END:

16



Local Optimization



Common Subexpression Elimination

v1 = a op b

. . .

v2 = a op b

If values of v1, a, and b have not changed, rewrite the code:

v1 = a op b

. . .

v2 = v1

17



Common Subexpression Elimination

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = a + b;
param _t2
call f ;

18



Common Subexpression Elimination

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = a + b;
param _t2
call f ;

19



Common Subexpression Elimination

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = _t1 ;
param _t2
call f ;

20



Copy Propagation

If we have

v1 = v2

then as long as v1 and v2 have not changed, we can rewrite

a = ... v1 ...

as

a = ... v2 ...

21



Copy Propagation

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = _t1 ;
param _t2
call f ;

22



Copy Propagation

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = 4;
_t1 = a + b;
c = _t1 ;
_t2 = _t1 ;
param _t2
call f ;

23



Copy Propagation

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = 4;
_t1 = a + b;
c = _t1 ;
_t2 = _t1 ;
param _t2
call f ;

24



Copy Propagation

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t2
call f ;

25



Copy Propagation

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t2
call f ;

26



Copy Propagation

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t1
call f ;

27



Dead Code Elimination

An assignment to a variable v is called dead if its value is
never read anywhere.

28



Dead Code Elimination

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t1
call f ;

29



Dead Code Elimination

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t1
call f ;

30



Dead Code Elimination

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t1 = 4 + b;
param _t1
call f ;

31



For Comparison

C code:
int a;
int b;
int c;
a = 4;
c = a + b;
f(a + b);

Three-address code:
_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = a + b;
param _t2
call f ;

Optimized code:

_t1 = 4 + b;
param _t1
call f ;

32



Computing Live Variables (for dead code elimination)

Initially, some small set of values are known to be live.

When we see the statement a = b + c:

• Just before the statement, a is not alive, since its value is
about to be overwritten.

• Just before the statement, both b and c are alive, since
we’re about to read their values.

• what if we have a = b + a?

33



Computing Live Variables (for dead code elimination)

{ b }

a = b;

c = a;

d = a + b;

e = d;

{ a, b }

d = a;

f = e;

{b, d}

34



Computing Live Variables (for dead code elimination)

{ b }

a = b;

c = a;

d = a + b;

e = d;

{ a, b }

d = a;

f = e;

{b, d}

34



Computing Live Variables (for dead code elimination)

{ b }

a = b;

c = a;

d = a + b;

e = d;

{ a, b }

d = a;

f = e;

{b, d}

34



Computing Live Variables (for dead code elimination)

{ b }

a = b;

c = a;

d = a + b;

e = d;

{ a, b }

d = a;

f = e;

{b, d}

34



Computing Live Variables (for dead code elimination)

{ b }

a = b;

c = a;

d = a + b;

e = d;

{ a, b }

d = a;

f = e;

{b, d}

34



Computing Live Variables (for dead code elimination)

{ b }

a = b;

c = a;

d = a + b;

e = d;

{ a, b }

d = a;

f = e;

{b, d}

34



Computing Live Variables (for dead code elimination)

{ b }

a = b;

c = a;

d = a + b;

e = d;

{ a, b }

d = a;

f = e;

{b, d}

34



Computing Available Expressions

An expression is called available if some variable in the
program holds the value of that expression.

Both common subexpression elimination and copy
propagation depend on an analysis of the available
expressions in a program.

Initially, no expressions are available.

When we see the statement a = b + c:

• Any expression holding a is invalidated.
• The expression a = b + c becomes available.

35



Computing Available Expressions

{ }

a = b;

{ a=b }

c = b;

{ a=b, c=b }

d = a + b;

{ a=b, c=b, d=a+b }

e = a + b;

{ a=b, c=b, d=a+b, e=a+b }

d = b;

{ a=b, c=b, d=b, e=a+b }

f = a + b;

{ a=b, c=b, d=b, e=a+b, f=a+b }

36



Computing Available Expressions

{ }

a = b;

{ a=b }

c = b;

{ a=b, c=b }

d = a + b;

{ a=b, c=b, d=a+b }

e = a + b;

{ a=b, c=b, d=a+b, e=a+b }

d = b;

{ a=b, c=b, d=b, e=a+b }

f = a + b;

{ a=b, c=b, d=b, e=a+b, f=a+b }

36



Computing Available Expressions

{ }

a = b;

{ a=b }

c = b;

{ a=b, c=b }

d = a + b;

{ a=b, c=b, d=a+b }

e = a + b;

{ a=b, c=b, d=a+b, e=a+b }

d = b;

{ a=b, c=b, d=b, e=a+b }

f = a + b;

{ a=b, c=b, d=b, e=a+b, f=a+b }

36



Computing Available Expressions

{ }

a = b;

{ a=b }

c = b;

{ a=b, c=b }

d = a + b;

{ a=b, c=b, d=a+b }

e = a + b;

{ a=b, c=b, d=a+b, e=a+b }

d = b;

{ a=b, c=b, d=b, e=a+b }

f = a + b;

{ a=b, c=b, d=b, e=a+b, f=a+b }

36



Computing Available Expressions

{ }

a = b;

{ a=b }

c = b;

{ a=b, c=b }

d = a + b;

{ a=b, c=b, d=a+b }

e = a + b;

{ a=b, c=b, d=a+b, e=a+b }

d = b;

{ a=b, c=b, d=b, e=a+b }

f = a + b;

{ a=b, c=b, d=b, e=a+b, f=a+b }

36



Computing Available Expressions

{ }

a = b;

{ a=b }

c = b;

{ a=b, c=b }

d = a + b;

{ a=b, c=b, d=a+b }

e = a + b;

{ a=b, c=b, d=a+b, e=a+b }

d = b;

{ a=b, c=b, d=b, e=a+b }

f = a + b;

{ a=b, c=b, d=b, e=a+b, f=a+b }

36



Computing Available Expressions

{ }

a = b;

{ a=b }

c = b;

{ a=b, c=b }

d = a + b;

{ a=b, c=b, d=a+b }

e = a + b;

{ a=b, c=b, d=a+b, e=a+b }

d = b;

{ a=b, c=b, d=b, e=a+b }

f = a + b;

{ a=b, c=b, d=b, e=a+b, f=a+b }

36



Computing Available Expressions

{ }

a = b;

{ a=b }

c = b;

{ a=b, c=b }

d = a + b;

{ a=b, c=b, d=a+b }

e = d;

{ a=b, c=b, d=a+b, e=a+b }

d = b;

{ a=b, c=b, d=b, e=a+b }

f = e;

{ a=b, c=b, d=b, e=a+b, f=a+b }

36



Other Types of Local Optimization

Arithmetic simplication:

• e.g., rewrite x = 4 * a as x = a « 2

Constant folding:

• e.g., rewrite x = 4 * 5 as x = 20

37



Global Optimization



Global Constant Propagation

START:

a = 6;

b = a; c = b;

END: d = a

38



Global Constant Propagation

Replace each variable that is known to be a constant value
with the constant.

39



Global Constant Propagation

START:

a = 6;
x = y;

b = a; c = b;

END: d = x + a

40



Global Constant Propagation

START:

a = 6;
x = y;

b = 6; c = b;

END: d =x + 6

41



Global Dead Code Elimination

START:

a = 6;
x = y;

b = 6; c = b;

END: d = x + 6

42



Global Dead Code Elimination

START:

a = 6;
x = y;

b = 6; c = b;

END: d = x + 6

43



Global Dead Code Elimination

START:

x = y;

END: d = x + 6

44


	Local Optimization
	Global Optimization

