Runtime Environments

Ronghui Gu
Spring 2020

Columbia University

* Course website: https://www.cs.columbia.edu/ rgu/courses/4115/spring2019
** These slides are borrowed from Prof. Edwards.

https://www.cs.columbia.edu/~rgu/courses/4115/spring2019

Storage Classes

Storage Classes and Memory Layout

High
: objects created/destroyed in memory
last-in, first-out order Stack
s Stéck
pointer
i . it Program
: objects created/destroyed in break
any order; automatic garbage Heap
collection optional
: objects allocated at compile Static
time; persist throughout run
Code
Low

memory

Static Objects

class Example { Examples

ublic static final int a = 3; c .
P Static class variable

public void hello () {
System.out . println ("Hello");

} Information about the

String constant “Hello”

! Example class
Advantages Disadvantages

Zero-cost memory Size and number must be
management known beforehand

Often faster access (address a Wasteful
constant)

No out-of-memory danger

The Stack and Activation Records

Stack-Allocated Objects

Idea: some objects persist from when a procedure is called to
when it returns.

Naturally implemented with a stack: linear array of memory
that grows and shrinks at only one boundary.

Natural for supporting recursion.

Each invocation of a procedure gets its own frame (activation
record) where it stores its own local variables and
bookkeeping information.

An Activation Record: The State Before Calling bar

int foo(int a,

}

int ¢, d;
bar (1, 2,

3);

int b) {

b

a

Return addr.

Old frame ptr. o]

Registers

From Caller

Frame Ptr.

= |NWw|a|n

<— Stack Ptr.

Recursive Fibonacci

Real C Assembly-like
int fib(int n) { int fib (int n) {
int tmpl, tmp2, tmp3;
if (n<2) tmpl = n < 2;
if (!tmpl) goto LI1;
return 1; return 1;
else L1: tmpl = n - 1;
return tmp2 = fib (tmpl);
fib (n-1) L2: tmpl = n - 2;
=+ tmp3 = fib (tmpl);
fib (n-2); L3: tmpl = tmp2 + tmp3;
return tmpl;
} }
fib(3)
7 N

fib(2) fib(1)

N

fib(1) fib(o) Executing fib(3)

int fib(int n) {
int tmpl, tmp2, tmp3;
tmpl = n < 2;
if ("tmpl) goto L1;
return 1;

L1: tmpl = n - 1;
tmp2 = fib(tmpl);

L2: tmpl = n - 2;
tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;

[n=3 N

E return address

int fib(int n) { last frame pointer *]
int tmpl, tmp2, tmp3; tmp1 =2
tmp2 =
tmpl = n < 2; tmp3 =
if (Itmp1) goto L1; o

return 1; E

L1: tmpl =n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);
L3: tmpl = tmp2 + tmp3;

return tmpl;

|

n=3

int fib(int n) {
int tmpl, tmp2, tmp3;
tmpl = n < 2;
if (Itmp1) goto L1;

return address
last frame pointer

tmp1
tmp2
tmp3
n=2

2

e

return 1; E
L1: tmpl =n - 1;

tmp2 = fib(tmpl); «~— |
L2: tmpl = n - 2;

tmp3 = fib(tmpl);
L3: tmpl = tmp2 + tmp3;

return tmpl; E

return address
last fra inter ©

tmp1 =1

tmp2
tmp3
n=1

int fib(int n) {

[n=-3

int tmpl, tmp2, tmp3;

tmpl = n < 2;
if (Itmp1) goto L1;
return 1;
L1: tmpl = n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;

&

return address *

last frame pointer
tmp1 =2

tmp2
tmp3 =
n=2

return address
M
tmp1 =1

tmp2 =

tmp3
n=1

return address *

last frame pointer *
tmp1 =1

tmp2
tmp3

[n=-3

return address ~ *
int fib(int n) { last frame pointer
int tmpl, tmp2, tmp3; tmp1 =2
tmp2 =
tmpl = n < 2;
if (Itmpl) goto L1; tmp3 =
if ("tmpl) goto L1; o

return 1; L return address
L1: tmpl =n - 1; last fra inter *

tmp2 = fib(tmpl); « tmp1=0
L2: tmpl = n - 2; tmp2 =1
tmp3 = fib(tmpl); tmp3 =
n==~0

L3: tmpl = tmp2 + tmp3;

return tmpl; E

int fib(int n) {
int tmpl, tmp2, tmp3;
tmpl = n < 2;
if (Itmp1) goto L1;
return 1;

L1: tmpl = n - 1;

tmp2 = fib(tmpl);

L2: tmpl = n - 2;

[n=-3

return address *

last frame pointer

tmp1 =2

tmp2 =

tmp3 =

n=2

return address
M
tmp1=0

tmp2 =1

tmp3 = fib(tmpl); <+— tmp3 =

L3: tmpl = tmp2 + tmp3;

return tmpl;

n=0

@ return address *

last frame pointer *
tmp1 =1

tmp2
tmp3 =

[n-3

return address ~ *
int fib(int n) { last frame pointer
int tmpl, tmp2, tmp3; tmp1 =2
tmp2 =
tmpl = n < 2;
e 0]) tmp3 =
if (Itmpl) goto L1; 0= o

return 1; L return address
L1: tmpl =n - 1; last fra inter *

tmp2 = fib(tmpl); < [tmp1=2
L2: tmpl = n - 2; tmp2 =1

tmp3 = fib(tmpl); tmp3 =1
L3: tmpl = tmp2 + tmp3; E

return tmpl;

int fib(int n) {
int tmpl, tmp2, tmp3;

tmpl = n < 2;
if (Itmpl) goto L1;
return 1;

L1: tmpl = n - 1;

tmp2 = fib(tmpl);

L2: tmpl = n - 2;

tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;

FP 1

n=3

return address
last frame pointer *—|
tmp1 =1
tmp2 =2
tmp3 =
n=1

int fib(int n) {

|

n=3

int tmpl, tmp2, tmp3;

tmpl = n < 2;

if (Itmp1) goto L1;

return 1;
L1: tmpl = n - 1;
tmp2 = fib(tmpl
L2: tmpl = n - 2;
tmp3 = fib(tmpl

L3: tmpl = tmp2 + tmp3;

return tmpl;

return address *

last frame pointer

tmp1 =1
tmp2 =2
tmp3 =
n=1

FP o4
)i

);‘/

return address

last frame

E»

[n=3 ' !
E return address *
int fib(int n) { Jl[aSt 1frar:e pOintlir]
mp1 = 3« resu
tmp2 =2
tmp3 =1

int tmpl, tmp2, tmp3;

tmpl = n < 2;

if (Itmpl) goto L1;

return 1; @
L1: tmpl = n - 1;

tmp2 = fib(tmpl);
L2: tmpl = n - 2;

tmp3 = fib(tmpl);
L3: tmpl = tmp2 + tmp3;

return tmpl;

Allocating Fixed-Size Arrays

Local arrays with fixed size are easy to stack.

return address

void foo () a
{
int a; b[9]
int b[10]; o
int c; :
} blo]
C

«— FP

— FP — 48

Allocating Variable-Sized Arrays

Variable-sized local arrays aren't as easy.

void foo(int n) return address | < FP
{ a
int a;
int bln]; b[n-1]
int c; .
} .
b[o]
c +—FP -7

Doesn’'t work: generated code expects a fixed offset for c. Even
worse for multi-dimensional arrays.

Allocating Variable-Sized Arrays

As always: return address [FP
add a level of indirection a
void foo(int n) b-ptr
{

int a; C \

int b[n]; _

int c; b[n 1]
t .

blo]

Variables remain constant offset from frame pointer.

10

Implementing Nested Functions with Access Links

(access link) °
let a x s =
a:|x =15
let by = S =42
let ¢ z = 2z + s in

let d w= ¢ (w+l) in
d (y+1) in (* b *)
let e g =b (g+l) in

e (x+1) (* a %)

What does “a 5 42" give?

1"

Implementing Nested Functions with Access Links

(access link) *
let a x s =
aijx=5
let by = S =42
let ¢ z =2z + s in o (access link) ©
let d w= c (w+l) in q=6

d (y+1) in (* b *)
let e g =b (g+l) in

e (x+1) (* a *)

What does “a 5 42" give?

1"

Implementing Nested Functions with Access Links

(access link) *
let a x s =
a:|x =15
let by = S =12
let cz=2+s in N (access link) *
let d w= c (w+l) in q=6
d (y+1) in (* b *) b (access link)
y=7
let e g =b (g+l) in
e (x+1) (* a *)

What does “a 5 42" give?

1"

Implementing Nested Functions with Access Links

(access link) °
let a x s
a:|x =5
let by S =2
let ¢ z = z + s in o (access l|nk) L4
let d w= ¢ (w+l) in q=6
d (y+1) in (* b *) b (access link)
y=7
let e g =b (g+l) in -
4 (access link) *
e (x+1) (* a *) “lw=8

What does “a 5 42" give?

1"

Implementing Nested Functions with Access Links

lot o % & = (access link)
a:|x =5
let by = S =2
let ¢ z = z + s in o (access l|nk) L4
let d w= ¢ (w+l) in q=6
d (y+1) in (* b *) b (access link)
y=17
let e g =b (g+l) in -
4 (access link) *
e (x+1) (* a *) “lw=8
What does “a 5 42" give? . | (access link)
z=9

1"

In-Memory Layout Issues

Layout of Records and Unions

Modern processors have byte-addressable memory.

The IBM 360 (c. 1964)
helped to popularize
byte-addressable memory.

A e
Many data types (integers, addresses, floating-point numbers)
are wider than a byte.

16-bit integer: n
32-bit integer: n

12

Layout of Records and Unions

Modern memory systems read
data in 32-, 64-, or 128-bit chunks:

n How about reading an unaligned

n value?
EBEaR BB EN
7 6) 4

Reading an aligned 32-bit value is
fast: a single operation.

[3f2ffo]
| 7Jofsf4
(11 folofs

13

To avoid unaligned accesses, the C compiler pads the layout of
unions and records. Rules:

« Each n-byte object must start on a multiple of n bytes (no
unaligned accesses).

« Any object containing an n-byte object must be of size mn for
some integer m (aligned even when arrayed).

struct padded {
int x; * 4 bytes * struct padded {
char z; * 1 byte * char a; * 1 byte
short y; /* 2 bytes * short b, 2 bytes
char w; * 1 byte * short c¢; /* 2 bytes
b b

b lb e
HE B

14
v

To avoid unaligned accesses, the C compiler pads the layout of
unions and records. Rules:

« Each n-byte object must start on a multiple of n bytes (no
unaligned accesses).

« Any object containing an n-byte object must be of size mn for
some integer m (aligned even when arrayed).

struct padded {
int x; * 4 bytes * struct padded {
char z; * 1 byte * char a; 1 byte
char w; * 1 byte * short b, 2 bytes
short y; /* 2 bytes * short c; 2 bytes
b b

b lb e

15

Padding: (1) or (2)?

struct padded {

int a; * 4 bytes *

char b; /* 1 byte *

char c¢; /* 1 byte *
};

L c|b L] o]

(1) (2)

16

A C union shares one space among all fields

union intchar { union twostructs
int i; * 4 bytes * struct {
char c; * 1 byte * char c¢;
J int ij
}oa;

. struct {
i i] i TR
short s2;
} b;
}s

Basic policy in C: an array is mm
just one object after another

in memory.

201 (ls1] l1] ol] ls)

What if we remove rule 2 of

padding? ﬂﬂﬂﬂ blo]
truct { ---

icI}ll;raZ:; Hnnn b[1]
}b2); L]

18

Arrays and Aggregate types

The largest primitive type
dictates the alignment

struct {
short a;
short b;
char c;

}d[4];

19

Arrays and Aggregate types

The largest primitive type
dictates the alignment

struct {

short a;

short b;

char c;
}odl4];

20

Arrays of Arrays

char a|4];

alo]
R Gy al1]
al2]

21

The Heap

Heap-Allocated Storage

A heap is a region of memory where blocks can be
dynamically allocated and deallocated in any order.

22

Dynamic Storage Allocation in C

struct point {
int x, y;
};

int play with points(int n)
{

int 1i;

struct point *points;

points = malloc(n *

sizeof (struct point));
for (1 =0 ; i <mn; i+t) {
points[i].x = random ();
points|[i].y = random ();

}

* do something with the array

free (points);

23

Dynamic Storage Allocation

24

Dynamic Storage Allocation

I s
¢ (D

24

Dynamic Storage Allocation

I s
¢ (D
]] [0

24

Dynamic Storage Allocation

I s
¢ (D
]] [0
matoc

24

Dynamic Storage Allocation

¢ (D

matoc

24

Dynamic Storage Allocation

Rules:
Each allocated block contiguous
Blocks stay fixed once allocated
malloc()

free()

25

Simple Dynamic Storage Allocation

Maintaining information about free memory
Simplest: Linked list

The algorithm for locating a suitable block
Simplest: First-fit

The algorithm for freeing an allocated block

Simplest: Coalesce adjacent free blocks

26

Simple Dynamic Storage Allocation

Simple Dynamic Storage Allocation

malloc(-)

Simple Dynamic Storage Allocation

[s]v]] s
malloc(-)

| HON | B

Simple Dynamic Storage Allocation

[s]v]] s
malloc(-)

| HON | B

free(¢)

Simple Dynamic Storage Allocation

[s|n] s v
malloc([)
| HON | B
free(¢)

50 s v |

27

FEE N ENEUT

malloc([) seven times give

free() four times gives

N N N
malloc(_)?

Need more memory; can’t use fragmented memory.

Zebra Tapir

28

Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

I

**

a

//'

*h c Pointers

T

s **c Handles

The original
Macintosh did this
to save memory.

29

Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

I I

\

*a

f

K3k

a

*h *c Pointers

I

**h **c¢c Handles

The original
Macintosh did this
to save memory.

29

Automatic Garbage Collection

Automatic Garbage Collection

Entrust the runtime system with freeing heap objects

Now common: Java, C#, Javascript, Python, Ruby, OCaml and
most functional languages

Advantages? Disadvantages?

30

Reference Counting

What and when to free?

- Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in n 42, 17

let ¢ = (1,2)::b in
b

31

Reference Counting

What and when to free?

- Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in 42, 17

let ¢ = (1,2)::b in
b

31

Reference Counting

What and when to free?

- Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in

let ¢ = (1,2)::b in
b

31

Reference Counting

What and when to free?

- Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in

let ¢ = (1,2)::b in
b

31

Reference Counting

What and when to free?

- Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in

let ¢ = (1,2)::b in
b

31

Reference Counting

What and when to free?

- Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let ¢ = (1,2)::b in
b

31

Reference Counting

What and when to free?

- Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in .
let ¢ = (1,2)::b in N b ~ \

b !1\'/\4—42\/\4——41\\\437

2

—_

31

Reference Counting

What and when to free?

- Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [asa] in 42, 17
let ¢ = (1,2)::b in b ™~

b o], [=2l [=1 [

31

Reference Counting

What and when to free?

- Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [asa] in 42, 17
let ¢ = (1,2)::b in b ™~

b D= nEE]

31

Reference Counting

What and when to free?

- Maintain count of references to each object
+ Free when count reaches zero

let a = (42, 17) in
let b = [asa] in 42, 17
let ¢ = (1,2)::b in b ™~

b D= nEE]

31

Issues with Reference Counting

Circular structures defy reference counting?

3l Tb]

32

Mark-and-Sweep

What and when to free?

- Stop-the-world algorithm invoked when memory full
+ Breadth-first-search marks all reachable memory
- All unmarked items freed

let a = (42, 17) in
let b = [a;a] in
let ¢ = (1,2)::b in
b

33

Mark-and-Sweep

What and when to free?

- Stop-the-world algorithm invoked when memory full
+ Breadth-first-search marks all reachable memory
- All unmarked items freed

let a = (42, 17) in
let b = [a;a] in .
let ¢ = (1,2)::b in b ™~

b [[[l [}—+ \\\417

33

Mark-and-Sweep

What and when to free?

- Stop-the-world algorithm invoked when memory full
+ Breadth-first-search marks all reachable memory
- All unmarked items freed

let a = (42, 17) in
let b = [a;a] in n 42, 17
let ¢ = (1,2)::b in b ™~

b | HA—#'\/H——#'\\\J%

33

Mark-and-Sweep

What and when to free?

- Stop-the-world algorithm invoked when memory full
+ Breadth-first-search marks all reachable memory
- All unmarked items freed

let a = (42, 17) in

let b = [a;a] in .

let ¢ = (1,2)::b in b \/
b B

[+ [\437

33

Mark-and-Sweep

Mark-and-sweep is faster overall; may induce big pauses

Mark-and-compact variant also moves or copies reachable
objects to eliminate fragmentation

Incremental garbage collectors try to avoid doing everything
at once

Most objects die young; generational garbage collectors
segregate heap objects by age

Parallel garbage collection tricky

Real-time garbage collection tricky

34

	Storage Classes
	The Stack and Activation Records
	In-Memory Layout Issues
	The Heap
	Automatic Garbage Collection

