Scanner

Ronghui Gu
Spring 2020

Columbia University

* Course website: https://www.cs.columbia.edu/ rgu/courses/4115/spring2019
** These slides are borrowed from Prof. Edwards.

https://www.cs.columbia.edu/~rgu/courses/4115/spring2019

The Big Picture

The First Question

How do we describe/construct a program?

Use continuously varying values?

Very efficient, but has serious noise issues

Edison Model B Home Cylinder phonograph, 1906

The ENIAC: Programming with Spaghetti

Have one symbol per program?

Works nicely when there are only a few things

Sholes and Glidden Typewriter, E. Remington and Sons, 1874

Have one symbol per program?

Not so good when there are many, many things

Nippon Typewriter SH-280, 2268 keys

ENGLISH SOUNDS

L System

ia

S
2

ina

te Comb

Iscre

Use a Di

Use combinations of a small number of things to represent

(exponentially) many different things.

Solution

Every Human Writing System Does This

ed for
incinding
ez de&&“’pccm

Sanskrit (36) Chinese (214 - 4000) IBM Selectric (88-96)

The Second Question

How do we describe the combinations of a small number of
things.

Just List Them?

Dniord TheOxked
joh Freleh B
Diti

The Oxford
English
Dictionary

SECOND EDITION
Volume |
A-Bazouki

CLARENDON P

Gets annoying for large numbers of combinations

10

Just List Them?

3 AA—AAAARAAARAAAR
A AA A A Budget Movi

ot Mvswua,a 2415868
AAAA A Canadion ik

rehnuse
Fropertes 5339 Egimon. 620-1577
1001 Arrowkd.

AAAAACritter Conrol.

AAAAA Griter Control

100 fumrest Unionle. 4106727
ARAADeveo

ARARAAAA GBS Haiing
130 Lsgowne. 5337139
ARARAAAAD

AAAAAAAAAAI\;MEM
L
71 And
g
" "!rm\u \ult i\mﬂw 663-2211
siraae T

oronto
AAAlAhmimglmdtm, szs6mea
AARAA B Mini Storage

55 Trtheweior. 2476204

Service. 3239522
AAAAAAAAAAAAABC
1860 BonilRd issaugs. 2483667

ARAARAAAAA

o5 Bt 253.0888
AAAAAAAAAA Rt Auto

Glass. 3984585

or .. 599.3410

588 oreence. 2056325
AAA A Prince Claude Moving. .. 287.6701
ARRAR Sik Stockings. 53435
AAA A A Woodbine Novigistarige Lt
65 Crockford . 751-4900
AAR A Aler Glssairar 6381389
AARAR AR iy
603 Evans. 2591578
AAAAAR Armstrong Mo
Siorage. 233-2477

AAAAAAHSL Noving&stora

e
503 Evans . 2537280

RARA A A Middup MevingRStor
60 EsnapariDr 4949451

AARAR A1 Movin

AARAA A Prestige Movers
705 ldsoned 5332633

AAAARA South Western Ontario Wi

‘504068

RARANA Spesdy MOS, | crocktord. 285.6084

7 Larstonna. 5163536

i 1130 MeyersideDr. 213.5660
AAARRAA K A oo s
Hotine. 283.0042
ARAAARAAAA CollinsEGrel
Cartage Lid 33 Coronet . 239.2991
ARAAAARARA Competition Auto
Glass. 223.1292
ARAAARAAAA Competition Ao
‘Giass.. 283.0042
ARAAAAAAA A Competition Ato
07693

ARAAAAAAAA intemational
Escorts 9296848
AAARAAAAAA Jowel Dgtnghicont
Service 4610629

AAAAAAAAAAMarketing
Services . 4130444
ARAAAAAR AR ANothing But

ARAAAAA AR AOn The Wild i

scon Service . 255.1320
AKARARAARA The Good Life Clubs

21 McCaul - 9791822

1126 Finchw. 6670574

AR Speedy Mo
1540 Victoriapark, 7519532
AAAAAAA Across The World Courier
425 Adelaidew. 5040008
AARAAAA Auto Glass
855 Alness, 663.8676
Escort

AAAARAR Calfforna Dreams.

Door
A s 2 . 251

AARAARAK Caforia Beach (b
Service. 321.9822

AAAAARAARAAA 4
AARARAAALAANCES
imousine 1
Cross

55 Above.
73 Berfrti. 465.5643

Movi
T332 8 Woosne 4230233
AAAAAAARARAAMSS
Victoria, 9677176
AAAARARAAAAAA Pyles
corts 485-5333

AABRAARALRARALR
Lawrenceksiy - 256-1600
nuuuuuuuun
AAAAAAA. 696700
AARARAAAAAAAAAA
ARAAAAAAAAAAAAAA
Mannis Zeller 255 DuncanMillRd . 441-9500
AAAAAAAAAAAAAAA
ARAAARAARARAAAN Cohent
Associates 1 StClaire. 323-0907
AAAARAARAARAAAN
AAAA A Asbaco
A emvamiions T8 Olfesson. 287.0000
AARARAAAAAAAAAK
ARARARRAARAA Aiia
242.6662

17 Canso.
Auuuuu ARARRKAR

Storage. 366.0237
AAAARAAAAAAAAAA
ARARAAALAAAAR Access
14 Hozeton. 9640138
AAAARAAAAAAAA
AAAAlAﬂl\Al\ll\Rdﬁl The

531
55 2225867
AARRAR AR AHarb At AAAA A 3320 Finché . 499-2144
Aagrssive Deferce 4950 Yompesi 121:7108 AAAAAAAAA
AARAAAAAA A A Compbell W AAA A Law 305 Miner 255.6688
mmm Baans ARAAARAAAAARAA
ARARARAKARAY) i To ction Law 5733 DundasS
55 Dynevor. 787.8039 AAAAAAAAA RAAAAA,
ARARARAARARsumet ‘lonAssociates 401 Bay 3635431
Escorts 6221177 AAAAAAAAAAAAAAAAAAAL
AAAAAAAAAAAABestOf The o ipling 2334773
9293039 AAAAAAAAAAAAAAAAAEgGE
AAMMAAAMummum Alarms 557 DixenAd. 247-0000
Royolfork. 2558518 AAAAAAAAAAARAAAAS

Towing 18 Canso . 2457676

Can be really redundant

ARARAAAAAAAAAAAAB
Towing 18 Cans_ 245-7676
'?“Mi\‘m&ﬂ‘“
obertson o
8 Nahaueen. 6201212
AARAAAAAAAAARAR AAAAAA

Rezz. 6525252
ARAAAAAARAAAAAR Acceis

7642020
ARARARAAAARAANR At
ompan il

e
!ﬂk 1000 FinchW . 663-2211
AAAAAAARAARARAR it
Claims 2 StCinW. 9442313
uuunuuumm.;mm
Sheppardave.
Munnnuuum
e oo ystems. Tnam
ARARAAARAAAARAAAN
Executive’s Cholce. 929-9390
AAAAAAAKAAAARAA
Automatic Garage Doars
84 Clarkson 751!10

uunnuuuum
4949777

Alarms 289 Consu
ARAAAARAAAARAAA Hegint
Meature Escorts_ 9233333
ABAAAARARARAAAR
Professional

 usden 5048111
ARAAAAAARARAAR A weit
Escorts¥ou, 259.3940
A RAAR AARA AAAA RARA A
Marco 1205 StClair¥/. 6512289
A AAAR ARAR AARA AAAA

Domenic
Taglola 1205 StClaic¥ . 651.2299
AMAAAAAAAAALARAARA &

Avaibble 4659191
A Tol
Class Escart Service. 4618110

‘Appie Auto Glass
No Charge Dl 1800 506-5665

Cardinal Custom Bulkding 2 sloor . 9664728
AAAAAAALU Student Movers. .. §93-2401
A& A AKABCO Door Co

1860 BanhillRd Missssauga

- Toronta 748-3667
AAARRABS Movers
643 LansdowneAv. 5881499
A Ak ARBBCCDEF Locksmith
BOStCIafE . 922:2255
AAAAABCMavers inc
S comhus 353013
AAANACH best o 5033
AARAA M O | Moving Systems
555 Miodtied. 2094239
hd.. 174964

i, 391154
o

~Tororta 748-3667

"

Scanning and Parsing

int avg (int a, int b) ...
v
Lexical Analysis
v
Syntax Analysis

'

Semantic Analysis
T front-end

’ Intermediate Code Generation ’
'
Optimization
'

’ Code Generation ’ back-end

'
0101110101...

middle-end

12

Lexical Analysis

Lexical Analysis (Scanning)

Translate a stream of characters to a stream of tokens

fOOH:Ha+Hbar(O,H427uq);

(1D]| EQUALS |[1D](PLUS |[ID][LPAREN |[NUM |[COMMA][ID]

Pattern

[LPAREN |[SEMI |
Token Lexemes
EQUALS
PLUS +
ID a foo bar
NUM 042

an equals sign

a plus sign

letter followed by letters or digits
one or more digits

13

Lexical Analysis

Goal: simplify the job of the parser and reject some wrong
programs, e.g.,

TotS ~ HHTH#$ '

is not a C program?
Scanners are usually much faster than parsers.

Discard as many irrelevant details as possible (e.g.,
whitespace, comments).

Parser does not care that the identifer is
“supercalifragilisticexpialidocious.”
Parser rules are only concerned with tokens.

T It is what you type when your head hits the keyboard "

Describing Tokens

Alphabet: A finite set of symbols
Examples: { 0,1}, { A B, C, ..., Z }, ASCII, Unicode

String: A finite sequence of symbols from an alphabet

Examples: € (the empty string), Ronghui, a8y

Language: A set of strings over an alphabet

Examples: @ (the empty language), { 1, 11, 111, 1111 }, all English
words, strings that start with a letter followed by any
sequence of letters and digits

15

Operations on Languages

Let L ={ ¢ wo }, M ={ man, men}

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

L UM = {e, wo, man, men }

Kleene Closure: Zero or more concatenations

M*={efUMUMMUMMM - =
{e, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, }

16

Regular Expressions over an Alphabet

A standard way to express languages for tokens.

1. e is a regular expression that denotes {¢}
2. Ifa € ¥, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

(r)| (s) denotes L(r)U L(s)
(r)(s) {tu:t e L(r),u € L(s)}

(r)* U L(r)!
where L(r)" = {¢}
and L(r) = L(r)L(r)*1

17

Regular Expression Examples

¥ ={a,b}
Regexp. Language
alb {a,b}
(a|b)(a|b) {aa,ab,ba,bb}
a* {€,a,aa,aaa,aaaa, ...}
(a|b)* {€,a,b,aa, ab, ba,bb, aaa, aab, aba, abd, . ..}
al|a*b {a, b, ab, aab, aaab, aaaab, ...}

18

Specifying Tokens with REs

ID: letter followed by letters or digits

Typical choice: Y = ASCll characters, i.e.,

{_,L"#,8,...,0,1,...,9,...,A,...,Z,...,”}
letters:A|B|--~|Z\a|--~yz
digits: 0 1|--- |9

identifier: letter (letter | digit)*

19

Implementing Scanners Automatically

Regular Expressions (Rules)

’ Nondeterministic Finite Automata’

Subset Construction

’ Deterministic Finite Automata ’

Tables

20

Nondeterministic Finite Automata

1. Set of states

Boe)

2. Set of input symbols X : {0,1}
3. Transition function
g:8x %, — 25

“All strings containing an
even number of 0’s and

rn

1S

state | ¢ 0 1
A |0 {B} {C}
B [0 {A} {D}
¢ |0 {D} {A}
D |0 {C} {B}

4. Start state s :

5. Set of accepting states

P {0} :

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the
start state to an accepting state that “spells out” z.

(&)
0
1 1
0
0
Show that the string “010010” is accepted.

1

22

Translating REs into NFAs (Thompson’s algorithm)

a HQ—CL»@ Symbol

1T m Sequence

Choice

T2

23

Why So Many Extra States and Transitions?

Invariant: Single start state; single end state; at most two
outgoing arcs from any state: helpful for simulation.

What if we used this simpler rule for Kleene Closure?

€ €

Q a b
—

€ €

Is this right? 24

Translating REs into NFAs

Example: Translate (a | b)*abb into an NFA. Answer:

D@0 400)

Show that the string “aabb” is accepted. Answer:
b b
OO0 OEORORO0)

25

Problem: you must follow the “right” arcs to show that a string
is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the e-closure of the start state
2. For each character c,

+ New states: follow all transitions labeled ¢
« Form the e-closure of the current states

3. Accept if any final state is accepting

26

Simulating an NFA: -aabb, Start

€ ¢ @&@«6 € a b b
— @(@ SO Poe
b

27

Simulating an NFA: -aabb, c-closure

€ y ‘&@«6 € a b b
— (r Doy aac
b

28

Simulating an NFA: a-abb

29

Simulating an NFA: a-abb, c-closure

30

Simulating an NFA: aa-bb

31

Simulating an NFA: aa-bb, c-closure

32

Simulating an NFA: aab-b

€ ¢ @&@«6 € a b b
— @(@ o osor Y@
b

33

Simulating an NFA: aab-b, c-closure

€ ‘ ‘&@«6 € a b b
— (r o 0 ¢ @0
b

34

Simulating an NFA: aabb-

35

Simulating an NFA: aabb-, Done

36

Deterministic Finite Automata

Restricted form of NFAs:

« No state has a transition on e

« For each state s and symbol g, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261 (Sipser,
Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.

37

Deterministic Finite Automata

{
type token = ELSE | ELSEIF
}
rule token =
parse "else" { ELSE }
| "elseif" { ELSEIF }

HQ_E,QLQ_S.QHQU i Q_f,@

38

Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =

parse "if" { IF }
| [’a’-z’] [’a’-72z7 ’07-797|* as lit { ID(lit) }
| [707-79]+ as num { NUM(num) }

39

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states
that appear.

Each unique state during simulation becomes a state in the
DFA.

40

The Subset Construction Algorithm

1. Create the start state of the DFA by taking the s-closure of
the start state of the NFA.

2. Perform the following for the new DFA state: For each
possible input symbol:

« Apply move to the newly-created state and the input
symbol; this will return a set of states.

+ Apply the e-closure to this set of states, possibly resulting
in a new set. This set of NFA states will be a single state in
the DFA.

3. Each time we generate a new DFA state, we must apply
step 2 to it. The process is complete when applying step 2
does not yield any new states.

4. The finish states of the DFA are those which contain any

of the finish states of the NFA.
41

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

42

Result of subset construction for (a | b)*abb

Is this minimal?

43

Minimized result for (a | b)*abb

L4

Transition Table Used In the Dragon Book

Problem: Translate (a | b)*abb into an NFA and perform subset
construction to produce a DFA.

Solution:

NFA State DFAState a b
{0,1,2,4,7} A B C
{1,2,3,4,6,7,8} B B D
{1,2,4,5,6,7} C B C
{1,2,4,5,6,7,9} D B E .
{1,2,4,5,6,7,10} E B C

Subset Construction

An DFA can be exponentially larger than the corresponding
NFA.

n states versus 2"

Tools often try to strike a balance between the two
representations.

46

Lexical Analysis with Ocamllex

Constructing Scanners with Ocamllex

ocamllex
scanner.mll

(subset construction)

An example:

scanner.mll

{ open Parser }

rule token =

parse

[0\ A)

7/7
[707-797]+ as lit
eof

A A A A A o

scanner.ml

token lexbuf }

PLUS }

MINUS }

TIMES }

DIVIDE }
LITERAL(int of string
EOF }

lit) }

47

Ocamllex Specifications

{

(* Header: verbatim OCaml code; mandatory *)
}
(* Definitions: optional *)
let ident = regexp
let

(* Rules: mandatory *)
rule entrypointl [argl ... argn| =
parse patternl { action (* OCaml code *) }

| patternn { action }
and entrypoint2 [argl ... argn|} =

and

(* Trailer: verbatim OCaml code; optional *)

48

Patterns (In Order of Decreasing Precedence)

Pattern Meaning

& A single character

_ Any character (underline)

eof The end-of-file

"foo" A literal string

15 a2 “1," “5,” or any lowercase letter
[~ 09 Any character except a digit

(pattern) Grouping

identifier A pattern defined in the let section
pattern * Zero or more patterns

pattern + One or more patterns

pattern ? Zero or one patterns

pattern; patterns

pattern, followed by pattern,

pattern, | patterns

Either pattern, or patterns

pattern as id

Bind the matched pattern to variable id 49

{ type token = PLUS | IF | ID of string | NUM of int }
let letter = [’a’_’z7 7A7_»Z,]
let digit = [707_797]

rule token =
parse [’ 7 ’\n’ ’\t’] { token lexbuf } (* Ignore whitespace

| >+’ { PLUS } (* A symbol *)

| "if" { IF } (* A keyword *)
(* Identifiers *)
| letter (letter | digit | > ’)* as id { ID(id) }
(* Numeric |1
| digit+ as lit { NUM(int of string lit) }

iterals

| "/*" { comment lexbuf } (* C-style comments

and comment =
parse "*/" { token lexbuf } (* Return to normal scanning

| _ { comment lexbuf } (* Ignore other characters *)
CO

Nested Comments

{ type token = PLUS | ID of string | NUM of int }

let letter = [’a’-’z’ ’A’-’Z]

let digit [70°-797]

rule token =

parse [’ 7 ’\n’ ’\t’] { token lexbuf } (* Ignore whitespace
| ’+’ { PLUS } (* A symbol *)

| letter (letter | digit | 7 7)* as id { ID(id) }
| digit+ as lit { NUM(int of string lit) }

| "/*" { comment 0 lexbuf } (* C-style comment

and comment level =

parse "*/" { if level =— 0 then token lexbuf
else comments (level - 1) lexbuf }
| "/*" { comment (level + 1) lexbuf }
| _ { comment level lexbuf } (* Ignore other characte

=]
>

Free-Format Languages

Typical style arising from scanner/parser division

Program text is a series of tokens possibly separated by
whitespace and comments, which are both ignored.

- keywords (if while)

« punctuation (, (+)

« identifiers (foo bar)

+ numbers (10 -3.14159%+32)
« strings ("A String")

52

Free-Format Languages

Java C C++ CH Algol Pascal

Some deviate a little (e.g., C and C++ have a separate
preprocessor)

But not all languages are free-format.

53

The Python scripting language groups with indentation

i =20
while i
=
prin

10:
+ 1
i) ..., 10

<
i
t Prints 1, 2,
i=20
while 1 <
i =1

10:
+ 1

Just prints 10

print i

This is succinct, but can be error-prone.

How do you wrap a conditional around instructions?

54

Syntax and Language Design

Does syntax matter? Yes and no

More important is a language’s semantics—its meaning.
The syntax is aesthetic, but can be a religious issue.
But aesthetics matter to people, and can be critical.
Verbosity does matter: smaller is usually better.

Too small can be problematic: APL is a succinct language with
its own character set.

There are no APL programs, only puzzles.

55

Syntax and Language Design

Some syntax is error-prone. Classic FORTRAN example:

DO5 1 =1,25 |
DO5 I =1.25 !

Loop header (for i 1 to 25)
Assignment to variable DOS5I J

Trying too hard to reuse existing syntax in C++:

vector< vector<int> > foo;

vector<vector<int>> foo; Syntax (\m'm'J

C distinguishes > and >> as different operators.

Bjarne Stroustrup tells me they have finally fixed this.

56

	The Big Picture
	Lexical Analysis
	Lexical Analysis with Ocamllex

