
⇤ Course website: https://www.cs.columbia.edu/ rgu/courses/����/spring����
⇤⇤ These slides are borrowed from Prof. Edwards.

Semantic Analysis

Ronghui Gu
Spring ����

Columbia University

�

https://www.cs.columbia.edu/~rgu/courses/4115/spring2019

Assignments and Grading

��� Team Programming Project

��� Midterm Exam

��� Three individual homework assignments

��� Final Exam (optional, cumulative)

Pass/Fail: a pass is anything other than the original F.

�

Semantic Analysis

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

Optimization

Code Generation

����������...

front-end

middle-end

back-end

�

Static Semantic Analysis

Lexical analysis: Each token is valid?

i f i f t 3 "This " /* va l i d Java tokens */

#a1123 /* not a token */

Syntactic analysis: Tokens appear in the correct order?

re turn 3 + " f " ; /* va l i d Java syntax */

f o r break /* i n v a l i d syntax */

Semantic analysis: Names used correctly? Types consistent?

i n t v = 42 + 13 ; /* va l i d in Java (i f v i s new) */

return 3 + " f " ; /* i n v a l i d */

return f + f (3) ; /* i n v a l i d */

�

What’s Wrong With This?

a + f(b, c)

Is a de�ned?

Is f de�ned?

Are b and c de�ned?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?

Scope questions Type questions

�

What’s Wrong With This?

a + f(b, c)
Is a de�ned?

Is f de�ned?

Are b and c de�ned?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?

Scope questions Type questions

�

What To Check

Examples from Java:

Verify names are de�ned (scope) and are of the right type
(type).

i n t i = 5 ;

i n t a = z ; /* Error : cannot f i nd symbol */

i n t b = i [3] ; /* Error : array requ i red , but i n t found */

Verify the type of each expression is consistent (type).

i n t j = i + 53 ;

i n t k = 3 + " h e l l o " ; /* Error : incompat ib l e types */

i n t l = k (4 2) ; /* Error : k i s not a method */

i f (" He l l o ") re turn 5 ; /* Error : incompat ib le types */

St r ing s = " He l lo " ;

i n t m = s ; /* Error : incompat ib l e types */

�

Scope - What names are visible?

Names Bindings Objects

Obj �

Obj �

Obj �

Obj �

Name�

Name�

Name�

Name�

�

Scope

Scope: where/when a name is bound to an object

Useful for modularity: want to keep most things hidden

Scoping Visible Names Depend On
Policy

Static Textual structure of program
Names resolved by compile-time symbol tables
Faster, more common, harder to break programs

Dynamic Run-time behavior of program
Names resolved by run-time symbol tables,
e.g., walk the stack looking for names
Slower, more dynamic

�

Basic Static Scope in C, C��, Java, etc.

A name begins life where it is
declared and ends at the end
of its block.

“The scope of an identi�er
declared at the head of a block
begins at the end of its
declarator, and persists to the
end of the block.”

void foo()

{

int x;

}

�

Hiding a De�nition

Nested scopes can hide earlier
de�nitions, giving a hole.

“If an identi�er is explicitly
declared at the head of a
block, including the block
constituting a function, any
declaration of the identi�er
outside the block is suspended
until the end of the block.”

void foo()

{

int x;

while (a < 10) {

int x;

}

}

��

Basic Static Scope in O’Caml

A name is bound after the “in”
clause of a “let.” If the name is
re-bound, the binding takes
e�ect after the “in.”

let x = 8 in

let x = x + 1 in

Returns the pair (��, �):
let x = 8 in

(let x = x + 2 in

x + 2),

x

��

Let Rec in O’Caml

The “rec” keyword makes a
name visible to its de�nition.
This only makes sense for
functions.

let rec fib i =

if i < 1 then 1 else

fib (i-1) + fib (i-2)

in

fib 5

(* Nonsensical *)

let rec x = x + 3 in

��

Static vs. Dynamic Scope

C

i n t a = 0 ;

i n t foo () {

re turn a ;

}

i n t bar () {

i n t a = 10 ;

re turn foo () ;

}

OCaml

l e t a = 0 in

l e t foo x = a in

l e t bar =

l e t a = 10 in

foo 0

Bash

a=0

foo ()

{

echo $a

}

bar ()

{

l o c a l a=10

foo

}

bar

echo $a

��

Static vs. Dynamic Scope

Most modern languages use static scoping.

Easier to understand, harder to break programs.

Advantage of dynamic scoping: ability to change environment.

A way to surreptitiously pass additional parameters.

��

Symbol Tables

• A symbol table is a data structure that tracks the current
bindings of identi�er

• Scopes are nested: keep tracks of the
current/open/closed scopes.

• Implementation: one symbol table for each scope.

��

Symbol Tables by Example: C-style

Implementing C-style scope (during walk over AST):

• Reach a declaration: Add entry to current table
• Enter a “block”: New symbol table; point to previous
• Reach an identi�er: lookup in chain of tables
• Leave a block: Local symbol table disappears

i n t x ;

i n t main () {

i n t a = 1 ;

i n t b = 1 ; {

f l o a t b = 2 ;

f o r (i n t i = 0 ; i < b ; i++) {

i n t b = i ;

. . .

}

}

b + x ;

}

x 7! int

a 7! int, b 7! int

b 7! �oat

i 7! int b 7! int

��

Types - What operations are
allowed?

Types

A restriction on the possible interpretations of a segment of
memory or other program construct.

Two uses:

Safety: avoids data being treated as
something it isn’t

Optimization: eliminates certain
runtime decisions

��

Safety - Why do we need types?

Certain operations are legal for certain types.
i n t a = 1 , b = 2 ;

re turn a + b ;

i n t a [1 0] , b [1 0] ;

r e turn a + b ;

��

Optimization - Why do we need types?

C was designed for e�ciency: basic types are whatever is
most e�cient for the target processor.

On an (��-bit) ARM processor,

char c ; /* 8 - b i t b inary */

shor t d ; /* 16 - b i t two ’ s - complement binary */

unsigned shor t d ; /* 16 - b i t b inary */

i n t a ; /* 32 - b i t two ’ s - complement binary */

unsigned i n t b ; /* 32 - b i t b inary */

f l o a t f ; /* 32 - b i t IEEE 754 f l o a t i n g - po int */

double g ; /* 64 - b i t IEEE 754 f l o a t i n g - po int */

��

Misbehaving Floating-Point Numbers

1e20 + 1e-20 = 1e20

1e-20 ⌧ 1e20

(1 + 9e-7) + 9e-7 6= 1 + (9e-7 + 9e-7)

9e-7 ⌧ 1, so it is discarded, however, 1.8e-6 is large enough

1.00001(1.000001� 1) 6= 1.00001 · 1.000001� 1.00001 · 1

1.00001 · 1.000001 = 1.00001100001 requires too much
intermediate precision.

��

What’s Going On?

Floating-point numbers are represented using an
exponent/signi�cand format:

1|{z}
S

10000001| {z }
�-bit exponent E

01100000000000000000000| {z }
��-bit signi�candM

= �1S ⇥ (1.0 + 0.M)⇥ 2E�bias

= �1.0112 ⇥ 2129�127 = �1.375⇥ 4 = �5.5.

What to remember:

1363.4568| {z }
represented

46353963456293| {z }
rounded

��

What’s Going On?

Results are often rounded:
1.00001000000

⇥1.00000100000

1.00001100001| {z }
rounded

When b ⇡ �c, b+ c is small, so ab+ ac 6= a(b+ c) because
precision is lost when ab is calculated.

Moral: Be aware of �oating-point number properties when
writing complex expressions.

��

Type Systems

Type Systems

• A language’s type system speci�es which operations are
valid for which types.

• The goal of type checking is to ensure that operations are
used with the correct types.

• Three kinds of languages
• Statically typed: All or almost all checking of types is done
as part of compilation (C, Java)

• Dynamically typed: Almost all checking of types is done as
part of program execution (Python)

• Untyped: No type checking (machine code)

��

Statically-Typed Languages

Statically-typed: compiler can determine types.

Dynamically-typed: types determined at run time.

Is Java statically-typed?

c l a s s Foo {

pub l i c void x () { . . . }

}

c l a s s Bar extends Foo {

pub l i c void x () { . . . }

}

void baz (Foo f) {

f . x () ;

}

��

Strongly-typed Languages

Strongly-typed: no run-time type clashes (detected or not).

C is de�nitely not strongly-typed:

f l o a t g ;

union { f l o a t f ; i n t i } u ;

u . i = 3 ;

g = u . f + 3 . 14159 ; /* u . f i s meaning less */

Is Java strongly-typed?

��

Type Checking and Type Inference

• Type Checking is the process of verifying fully typed
programs.

• Type Inference is the process of �lling in missing type
information.

• Inference Rules: formalism for type checking and
inference.

��

Inference Rules

Inference rules have the form If Hypotheses are true, then
Conclusion is true

` Hypothesis1 ` Hypothesis2
` Conclusion

Typing rules for int:

` NUMBER : int

` expr1 : int ` expr2 : int
` expr1 OPERATOR expr2 : int

Type checking computes via reasoning

��

How To Check Expressions: Depth-�rst AST Walk

check: node! typedNode

1 - 5

-

1 5

check(�)
check(�) � � : int
check(�) � � : int
int � int � int
� � � � : int

1 + " He l lo "

+

1 "Hello"

check(�)
check(�) � � : int
check(“Hello”) � “Hello” : string
FAIL: Can’t add int and string

��

How To Check Symbols?

What is the type of a variable reference?

x is a symbol
` x :?

The local, structural rule does not carry enough information
to give x a type.

��

Solution: Type Environment

Put more information in the rules!

A type environment gives types for free variables .

E ` NUMBER : int

E(x) = T
E ` x : T

E ` expr1 : int E ` expr2 : int
E ` expr1 OPERATOR expr2 : int

��

How To Check Symbols

check: environment! node! typedNode

1 + a

+

1 a

check(�, E)
check(�, E) � � : int
check(a, E) � a : E.lookup(a) � a : int
int � int � int
� � + a : int

The environment provides a “symbol table” that holds
information about each in-scope symbol. ��

The Type of Types

Need an OCaml type to represent the type of something in
your language.

For MicroC, it’s simple (from ast.ml):

type typ = Int | Bool | Float | Void

For a language with integer, structures, arrays, and exceptions:

type ty = (* can ’ t c a l l i t " type" s i n c e that ’ s r e s e rved *)

Void

| Int

| Array o f ty * i n t (* type , s i z e *)

| Exception o f s t r i n g

| St ruct o f s t r i n g * ((s t r i n g * ty) array) (* name , f i e l d s *)

��

Implementing a Symbol Table and Lookup

module StringMap = Map.Make(St r ing)

type symbol_table = {

(* Var i ab l e s bound in cur rent block *)

v a r i a b l e s : ty StringMap . t

(* Enc los ing scope *)

parent : symbol_table opt ion ;

}

l e t r e c f i nd_var i ab l e (scope : symbol_table) name =

try

(* Try to f i nd binding in nea r e s t b lock *)

StringMap . f i nd name scope . v a r i a b l e s

with Not_found -> (* Try look ing in outer b locks *)

match scope . parent with

Some(parent) -> f ind_var i ab l e parent name

| _ -> r a i s e Not_found

��

check: ast! sast

Converts a raw AST to a “semantically checked AST”

Names and types resolved

AST:

type expr =

L i t e r a l o f i n t

| Id o f s t r i n g

| Ca l l o f s t r i n g * expr l i s t

| . . .

+

SAST:

type expr_deta i l =

SL i t e r a l o f i n t

| SId o f s t r i n g

| SCal l o f s t r i n g * sexpr l i s t

| . . .

type sexpr = expr_deta i l * ty ��

	Scope - What names are visible?
	Types - What operations are allowed?
	Type Systems
	The Midterm

