
∗ Course website: https://verigu.github.io/4115Spring2022/
∗∗ These slides are borrowed from Prof. Edwards.

Scanner

Ronghui Gu
Spring 2022

Columbia University

1

https://verigu.github.io/4115Spring2022/

The Big Picture

The First Question

How do we describe/construct a program?

2

Use continuously varying values?

Very e�cient, but has serious noise issues
Edison Model B Home Cylinder phonograph, 1906

3

The ENIAC: Programming with Spaghetti

4

Have one symbol per program?

Works nicely when there are only a few things
Sholes and Glidden Typewriter, E. Remington and Sons, 1874

5

Have one symbol per program?

Not so good when there are many, many things
Nippon Typewriter SH-280, 2268 keys

6

Solution: Use a Discrete Combinatorial System

Use combinations of a small number of things to represent
(exponentially) many di�erent things.

7

Every Human Writing System Does This

Hieroglyphics (24+) Cuneiform (1000 – 300)

Sanskrit (36) Chinese (214 – 4000) IBM Selectric (88–96)

Mayan (100) Roman (21–26)

8

The Second Question

How do we describe the combinations of a small number of
things.

9

Just List Them?

Gets annoying for large numbers of combinations

10

Just List Them?

Can be really redundant
11

Scanning and Parsing

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

Optimization

Code Generation

0101110101...

front-end

middle-end

back-end

12

Lexical Analysis

Lexical Analysis (Scanning)

Translate a stream of characters to a stream of tokens

f o o ␣ = ␣ a + ␣ bar (0 , ␣ 42 , ␣ q) ;

ID EQUALS ID PLUS ID LPAREN NUM COMMA ID
LPAREN SEMI

Token Lexemes Pattern

EQUALS = an equals sign
PLUS + a plus sign
ID a foo bar letter followed by letters or digits
NUM 0 42 one or more digits

13

Lexical Analysis

Goal: simplify the job of the parser and reject some wrong
programs, e.g.,
%#$ ^# !#%#$

is not a C program†

Scanners are usually much faster than parsers.

Discard as many irrelevant details as possible (e.g.,
whitespace, comments).

Parser does not care that the identifer is
“supercalifragilisticexpialidocious.”

Parser rules are only concerned with tokens.
† It is what you type when your head hits the keyboard 14

Describing Tokens

Alphabet: A finite set of symbols

Examples: { 0, 1 }, { A, B, C, . . . , Z }, ASCII, Unicode

String: A finite sequence of symbols from an alphabet

Examples: ε (the empty string), Ronghui, αβγ

Language: A set of strings over an alphabet

Examples: ∅ (the empty language), { 1, 11, 111, 1111 }, all English
words, strings that start with a letter followed by any
sequence of letters and digits

15

Operations on Languages

Let L = { ε, wo }, M = { man, men }

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

L ∪M = {ε, wo, man, men }

Kleene Closure: Zero or more concatenations

M∗ = {ε} ∪M ∪MM ∪MMM · · · =
{ε, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, . . .}

16

Regular Expressions over an Alphabet Σ

A standard way to express languages for tokens.

1. ε is a regular expression that denotes {ε}
2. If a ∈ Σ, a is an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

(r) | (s) denotes L(r) ∪ L(s)

(r)(s) {tu : t ∈ L(r), u ∈ L(s)}

(r)∗ ∪∞i=0L(r)i

where L(r)0 = {ε}
and L(r)i = L(r)L(r)i−1

17

Regular Expression Examples

Σ = {a, b}

Regexp. Language

a | b {a, b}
(a | b)(a | b) {aa, ab, ba, bb}
a∗ {ε, a, aa, aaa, aaaa, . . .}
(a | b)∗ {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, . . .}
a | a∗b {a, b, ab, aab, aaab, aaaab, . . .}

18

Specifying Tokens with REs

ID: letter followed by letters or digits

Typical choice: Σ = ASCII characters, i.e.,
{␣, !, ",#, $, . . . , 0, 1, . . . , 9, . . . ,A, . . . ,Z, . . . ,~}

letters: A | B | · · · | Z | a | · · · | z

digits: 0 | 1 | · · · | 9

identifier: letter (letter | digit)∗

19

Implementing Scanners Automatically

Regular Expressions (Rules)

Nondeterministic Finite Automata

Deterministic Finite Automata

Tables

Subset Construction

20

Nondeterministic Finite Automata

“All strings containing an
even number of 0’s and
1’s”

A B

C D

0

0
11

0

0
1 1

1. Set of states

S :

{
A B C D

}
2. Set of input symbols Σ : {0, 1}
3. Transition function
σ : S × Σε → 2S

state ε 0 1

A ∅ {B} {C}
B ∅ {A} {D}
C ∅ {D} {A}
D ∅ {C} {B}

4. Start state s0 : A

5. Set of accepting states

F :

{
A

}
21

The Language induced by an NFA

An NFA accepts an input string x i� there is a path from the
start state to an accepting state that “spells out” x.

A B

C D

0

0
11

0

0
1 1

Show that the string “010010” is accepted.

A B D C D B A
0 1 0 0 1 0

22

Translating REs into NFAs (Thompson’s algorithm)

a
a

Symbol

r1r2
r1 r2r1 Sequence

r1 | r2

r1

r2

ε

ε

ε

ε

Choice

(r)∗ rε ε

ε

ε

Kleene Closure

23

Why So Many Extra States and Transitions?

Invariant: Single start state; single end state; at most two
outgoing arcs from any state: helpful for simulation.

What if we used this simpler rule for Kleene Closure?

r

ε

ε

Now consider a∗b∗ with this rule:

a b

ε

ε

ε

ε

Is this right? 24

Translating REs into NFAs

Example: Translate (a | b)∗abb into an NFA. Answer:

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Show that the string “aabb” is accepted. Answer:

0 1 2 3 6 7 8 9 10ε ε a ε ε a b b

25

Simulating NFAs

Problem: you must follow the “right” arcs to show that a string
is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the ε-closure of the start state
2. For each character c,

• New states: follow all transitions labeled c
• Form the ε-closure of the current states

3. Accept if any final state is accepting

26

Simulating an NFA: ·aabb, Start

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

27

Simulating an NFA: ·aabb, ε-closure

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

28

Simulating an NFA: a·abb

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

29

Simulating an NFA: a·abb, ε-closure

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

30

Simulating an NFA: aa·bb

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

31

Simulating an NFA: aa·bb, ε-closure

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

32

Simulating an NFA: aab·b

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

33

Simulating an NFA: aab·b, ε-closure

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

34

Simulating an NFA: aabb·

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

35

Simulating an NFA: aabb·, Done

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

36

Deterministic Finite Automata

Restricted form of NFAs:

• No state has a transition on ε

• For each state s and symbol a, there is at most one edge
labeled a leaving s.

Di�ers subtly from the definition used in COMS W3261 (Sipser,
Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.

37

Deterministic Finite Automata

{
type token = ELSE | ELSEIF

}

ru le token =
parse " else " { ELSE }

| " e l s e i f " { ELSEIF }

e l s e i f

38

Deterministic Finite Automata

{ type token = I F | ID of s t r i n g | NUM of s t r i n g }

ru le token =
parse " i f " { I F }

| [’ a ’ − ’ z ’] [’ a ’ − ’ z ’ ’0 ’ − ’ 9 ’] * as l i t { ID (l i t) }
| [’0 ’ − ’ 9 ’] + as num { NUM(num) }

NUM

ID IF

ID

0–9

i

a–hj–z

f

a–z0–9

a–eg–z0–9

0–9

a–z0–9

39

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states
that appear.

Each unique state during simulation becomes a state in the
DFA.

40

The Subset Construction Algorithm

1. Create the start state of the DFA by taking the ε-closure of
the start state of the NFA.

2. Perform the following for the new DFA state: For each
possible input symbol:
• Apply move to the newly-created state and the input

symbol; this will return a set of states.
• Apply the ε-closure to this set of states, possibly resulting

in a new set. This set of NFA states will be a single state in
the DFA.

3. Each time we generate a new DFA state, we must apply
step 2 to it. The process is complete when applying step 2
does not yield any new states.

4. The finish states of the DFA are those which contain any
of the finish states of the NFA.

41

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

42

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

42

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

42

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

b

a

b

42

Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b

42

Result of subset construction for (a | b)∗abb

a

b

a
b

b

a

a

ba

b

Is this minimal?

43

Minimized result for (a | b)∗abb

a

a
b

b

a

bab

44

Transition Table Used In the Dragon Book

Problem: Translate (a | b)∗abb into an NFA and perform subset
construction to produce a DFA.

Solution:

0 1
2 3

4 5
6 7 8 9 10ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

NFA State DFA State a b

{0,1,2,4,7} A B C
{1,2,3,4,6,7,8} B B D
{1,2,4,5,6,7} C B C
{1,2,4,5,6,7,9} D B E
{1,2,4,5,6,7,10} E B C

A B

C

a

b

D

a
b

b

a

E

a
ba

b 45

Subset Construction

An DFA can be exponentially larger than the corresponding
NFA.

n states versus 2n

Tools often try to strike a balance between the two
representations.

46

Lexical Analysis with Ocamllex

Constructing Scanners with Ocamllex

scanner.mll scanner.ml
ocamllex

(subset construction)

An example:

scanner.mll

{ open Parser }

ru le token =
parse [’ ’ ’ \ t ’ ’ \ r ’ ’ \n ’] { token lexbuf }

| ’ + ’ { PLUS }
| ’ − ’ { MINUS }
| ’ * ’ { TIMES }
| ’ / ’ { DIVIDE }
| [’0 ’ − ’ 9 ’] + as l i t { LITERAL (i n t _ o f _ s t r i n g l i t) }
| eof { EOF }

47

Ocamllex Specifications

{
(* Header : verbatim OCaml code ; mandatory *)

}

(* D e f i n i t i o n s : opt ional *)
l e t ident = regexp
l e t . . .

(* Rules : mandatory *)
ru le entrypo int1 [arg1 . . . argn] =

parse pattern1 { act ion (* OCaml code *) }
| . . .
| patternn { act ion }

and entrypoint2 [arg1 . . . argn] } =
. . .

and . . .

{
(* T r a i l e r : verbatim OCaml code ; opt ional *)

}

48

Patterns (In Order of Decreasing Precedence)

Pattern Meaning

’c’ A single character
_ Any character (underline)
eof The end-of-file
"foo" A literal string
[’1’ ’5’ ’a’-’z’] “1,” “5,” or any lowercase letter
[^ ’0’-’9’] Any character except a digit
(pattern) Grouping
identifier A pattern defined in the let section

pattern * Zero or more patterns
pattern + One or more patterns

pattern ? Zero or one patterns

pattern1 pattern2 pattern1 followed by pattern2

pattern1 | pattern2 Either pattern1 or pattern2

pattern as id Bind the matched pattern to variable id
49

An Example

{ type token = PLUS | I F | ID of s t r i n g | NUM of i n t }
l e t l e t t e r = [’ a ’ − ’ z ’ ’ A ’ − ’ Z ’]
l e t d i g i t = [’0 ’ − ’ 9 ’]

ru le token =
parse [’ ’ ’ \n ’ ’ \ t ’] { token lexbuf } (* Ignore whitespace *)

| ’ + ’ { PLUS } (* A symbol *)

| " i f " { I F } (* A keyword *)
(* I d e n t i f i e r s *)

| l e t t e r (l e t t e r | d i g i t | ’ _ ’) * as id { ID (id) }
(* Numeric l i t e r a l s *)

| d i g i t + as l i t { NUM(i n t _ o f _ s t r i n g l i t) }

| " /* " { comment lexbuf } (* C− s t y l e comments *)

and comment =
parse " */ " { token lexbuf } (* Return to normal scanning *)

| _ { comment lexbuf } (* Ignore other characters *)

50

Nested Comments

{ type token = PLUS | ID of s t r i n g | NUM of i n t }

l e t l e t t e r = [’ a ’ − ’ z ’ ’ A ’ − ’ Z ’]
l e t d i g i t = [’0 ’ − ’ 9 ’]

ru le token =
parse [’ ’ ’ \n ’ ’ \ t ’] { token lexbuf } (* Ignore whitespace *)

| ’ + ’ { PLUS } (* A symbol *)

| l e t t e r (l e t t e r | d i g i t | ’ _ ’) * as id { ID (id) }
| d i g i t + as l i t { NUM(i n t _ o f _ s t r i n g l i t) }

| " /* " { comment 0 lexbuf } (* C− s t y l e comments *)

and comment l e v e l =
parse " */ " { i f l e v e l == 0 then token lexbuf

else comments (l e v e l − 1) lexbuf }
| " /* " { comment (l e v e l + 1) lexbuf }
| _ { comment l e v e l lexbuf } (* Ignore other characters *)

51

Free-Format Languages

Typical style arising from scanner/parser division

Program text is a series of tokens possibly separated by
whitespace and comments, which are both ignored.

• keywords (if while)

• punctuation (, (+)

• identifiers (foo bar)

• numbers (10 -3.14159e+32)

• strings ("A String")

52

Free-Format Languages

Java C C++ C# Algol Pascal

Some deviate a little (e.g., C and C++ have a separate
preprocessor)

But not all languages are free-format.

53

Python

The Python scripting language groups with indentation
i = 0
while i < 1 0 :

i = i + 1
p r i n t i # P r i n t s 1 , 2 , . . . , 10

i = 0
while i < 1 0 :

i = i + 1
p r i n t i # J u s t p r i n t s 10

This is succinct, but can be error-prone.

How do you wrap a conditional around instructions?

54

Syntax and Language Design

Does syntax matter? Yes and no

More important is a language’s semantics—its meaning.

The syntax is aesthetic, but can be a religious issue.

But aesthetics matter to people, and can be critical.

Verbosity does matter: smaller is usually better.

Too small can be problematic: APL is a succinct language with
its own character set.

There are no APL programs, only puzzles.

55

Syntax and Language Design

Some syntax is error-prone. Classic fortran example:
DO 5 I = 1 ,25 ! Loop header (for i = 1 to 25)
DO 5 I = 1 . 2 5 ! Assignment to var iab le DO5I

Trying too hard to reuse existing syntax in C++:
vector < vector < int > > foo ;
vector < vector < int >> foo ; // Syntax error

C distinguishes > and >> as di�erent operators.

Bjarne Stroustrup tells me they have finally fixed this.

56

	The Big Picture
	Lexical Analysis

