
COMS W4115
Programming Languages and Translators

Homework Assignment 2

Prof. Ronghui Gu Due March 15 2024
Columbia University at 11:59PM PM

Submit your assignment as a zipped directory for question
1, a .mll file for question 2, and a single PDF file with the rest
of the homework problems written legibly, on Courseworks.

Do this assignment alone. You may consult the instructor or
a TA, but not other students. You may not consult solutions
from earlier semesters.

1. 20pt Extend the three-slide “calculator” example shown
in the OCaml slides (the source is also available on the
class website) to accept variables named with identifiers
consisting of lowercase letters, assignment to those vari-
ables, and sequencing using the “;” operator. For example,

foo = 3; bar = baz = 6; foo * bar + baz

should print “24”

Use a string-to-integer Map to track variable variables.
Add tokens to the parser and scanner for representing as-
signment, sequencing, and variable names.

The ocamllex rule for the variable names, which converts
the letters a–z into the corresponding literals, is

| [’ a ’ − ’ z ’]+ as id { VARIABLE(id) }

The new ast.mli file is

type operator = Add | Sub | Mul | Div
type expr =

Binop of expr * operator * expr
| L i t of i n t
| Seq of expr * expr
| Asn of s t r i n g * expr
| Var of s t r i n g

Make sure your code compiles without warnings

2. 10pt Write a regular expression for lexing floating point
constants in a file called scanner.mll. Your tokenizing
rule should be called lex_float. Your code should build
without warnings when ocamlbuild scanner.native is run
from the terminal. Your executable should read from stdin
and print the successfully lexed pattern to stdout. In or-
der to do so, include the following code at the end of
scanner.mll.

{
l e t buf = Lexing . from_channel s t d i n in
l e t f = l e x _ f l o a t buf in
p r in t _end l i ne f

}

You should lex floats according to the following (after
K&R):

A floating constant consists of an integer part,
a decimal point, a fraction part, an e or an E,
and an optionally signed integer exponent. The
integer and fraction parts both consist of a se-
quence of digits. Either the integer part, or the
fraction part (not both) may be missing; either
the decimal point or the e/E and the exponent
(not both) may be missing.

Hint: make sure your regular expression accepts floating
constants such as 1. 0.5e-15 .3E+3 .2 1e5 3.5E-4 but not
integer constants such as 42

3. 10pt Draw a DFA for a scanner that recognizes and dis-
tinguishes the following set of keywords. Draw accepting
states with double lines and label them with the name of
the keyword they accept. Follow the definition of a DFA
given in class.

fun function a let asp open full fell operator

4. 20pt Construct nondeterministic finite automata for the
following regular expressions using Thompson’s algo-
rithm, then use the subset construction algorithm to con-
struct DFAs for them using.

(a) aa∗b

(b) (ab | b)∗a

(c) ((a | ϵ) ba)∗

Number the NFA states; use the numbers to label DFA
states while performing subset construction.

1

5. 20pt Using this grammar, whose three terminals are a, b,
and c,

E → a F b
E → c
F → E a F
F → E

(a) Construct a rightmost derivation for aacacbb and
show the handle of each right-sentential form.

(b) Show the steps of a shift-reduce (bottom-up) parser
corresponding to this rightmost derivation.

(c) Show the concrete parse tree that would be con-
structed during this shift-reduce parse.

6. Build the LR(0) automaton for the following ambiguous
grammar. if, else, and null are terminals; the third rule
indicates T may be the empty string. Indicate the state in
which the shift/reduce conflict appears.

S′ → S
S → if S T
S →null
T →
T → else S

Check your work by running “ocamlyacc -v” on the gram-
mar below and looking through the “.output” file. Include
annotated snippets from the .output file that confirm your
answer.

%token IF ELSE NULL
%s t a r t s
%type <int>s

%%

s : IF s t { 0 }
| NULL { 0 }

t : /* empty */ { 0 }
| ELSE s { 0 }

Acknowledgment

The assignment is based on the materials designed by Prof.
Stephen A. Edwards.

