
∗ Course website: https://verigu.github.io/4115Spring2024/

Code Generation

Ronghui Gu
Spring 2024

Columbia University

1

https://verigu.github.io/4115Spring2024/

The Final Exam

The Final Exam

75 minutes

Closed book

One double-sided sheet of notes of your own devising

Anything discussed in class is fair game

Little, if any, programming

Details of OCaml/C/C++/Java syntax not required

2

Code Generation

Code Generation

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

IR Optimization

Code Generation

0101110101...

front-end

middle-end

back-end

3

Code Generation

• Choose the appropriate machine instructions for each IR
instruction.

• Mange finite machine resources (e.g., registers).
• Implement runtime environment.

4

The Memory Hierarchy

Memory tradeoffs: there is an enormous tradeoff between
speed and size in memory.

• Registers: 1 ns, 1 KB
• Per-CPU cache: 5 ns, 128 KB
• Shared cache: 25 ns, 6 MB
• Main memory: 100 ns, 16 GB
• Disk: 10 ms, 1 TB
• Network: 100 ms, huge

5

The Challenges of Code Generation

Goal: Try to get the best of all worlds by using multiple types
of memory.

Challenges:

• All variables in TAC live in memory.
• Position objects in a way that takes maximum advantage

of the memory hierarchy.
• Do so without hints from the programmer.

6

Register Allocation

Using registers intelligently is a critical step in any compiler.

Register allocation is the process of assigning variables to
registers and managing data transfer in and out of registers.

Challenges:

• In TAC, there are an unlimited number of variables.
• On a physical machine there are a small number of

registers.

7

Register Allocation

Explore three algorithms for register allocation:

• Naive (“no”) register allocation.
• Linear scan register allocation.
• Graph-coloring register allocation.

8

Naive Register Allocation

Naive Register Allocation

Idea: store every value in main memory, loading values only
when they’re needed.

• Insert load to pull the values from memory into registers
before access.

• Insert store to store the values back into memory after
access.

9

Naive Register Allocation

a = b + c;

lw $t0, -12(fp)

lw $t1, -16(fp)

add $t2, $t0, $t1

sw $t2, -8(fp)

d = a;

lw $t0, -8(fp)

sw $t0, -20(fp)

10

Naive Register Allocation

a = b + c;

lw $t0, -12(fp)

lw $t1, -16(fp)

add $t2, $t0, $t1

sw $t2, -8(fp)

d = a;

lw $t0, -8(fp)

sw $t0, -20(fp)

10

Naive Register Allocation

a = b + c;

lw $t0, -12(fp)

lw $t1, -16(fp)

add $t2, $t0, $t1

sw $t2, -8(fp)

d = a;

lw $t0, -8(fp)

sw $t0, -20(fp)

10

Naive Register Allocation

Advantages:

• Can easily translate IR to assembly.
• Never need to worry about running out of registers.

Disadvantages:

• Unnecessary loads and stores.
• Wastes space.
• Too slow.

11

Naive Register Allocation

Advantages:

• Can easily translate IR to assembly.
• Never need to worry about running out of registers.

Disadvantages:

• Unnecessary loads and stores.
• Wastes space.
• Too slow.

11

Naive Register Allocation

Advantages:

• Can easily translate IR to assembly.
• Never need to worry about running out of registers.

Disadvantages:

• Unnecessary loads and stores.
• Wastes space.
• Too slow.

11

Linear Scan Register Allocation

A Better Allocator

Goal: try to hold as many variables in registers as possible.

Register consistency:

• At each program point, each variable must be in the same
location.

• At each program point, each register holds at most one
live variable.

12

Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

e = d + a;

f = b + c;

f = f + b;

d = e + f;

g = d;

13

Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

e = d + a;

f = b + c;

f = f + b;

d = e + f;

g = d;

{ g }

13

Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

e = d + a;

f = b + c;

f = f + b;

d = e + f;

{ d }

g = d;

{ g }

13

Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

e = d + a;

f = b + c;

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

13

Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

e = d + a;

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

13

Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

13

Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.
{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

13

Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

a b c d e f g

14

Linear Scan

15

Linear Scan

15

Linear Scan

15

Linear Scan

15

Linear Scan

15

Linear Scan

15

Linear Scan

15

Linear Scan

15

Linear Scan

15

Another Example

16

Another Example

16

Another Example

16

Another Example

16

Another Example

16

Register Spilling

If a register cannot be found for a variable v, we may need to
spill a variable.

When a variable is spilled, it is stored in memory rather than a
register.

Spilling is slow, but sometimes necessary.

17

Register Spilling

If a register cannot be found for a variable v, we may need to
spill a variable.

When a variable is spilled, it is stored in memory rather than a
register.

Spilling is slow, but sometimes necessary.

17

Another Example

18

Another Example

18

Another Example

18

Another Example

18

Another Example

18

Another Example

18

Another Example

18

Another Example

18

Linear Scan Algorithm

Advantages

• Very efficient.
• Produce good code in many instances.
• Can generate code during iteration.

Disadvantages

• Imprecise due to use of live intervals.
• Many techniques can be better.

19

Linear Scan Algorithm

Advantages

• Very efficient.
• Produce good code in many instances.
• Can generate code during iteration.

Disadvantages

• Imprecise due to use of live intervals.
• Many techniques can be better.

19

Linear Scan Algorithm

Advantages

• Very efficient.
• Produce good code in many instances.
• Can generate code during iteration.

Disadvantages

• Imprecise due to use of live intervals.
• Many techniques can be better.

19

Correctness Proof

At each program point, each variable must be in the same
location.

• All variables assigned a unique location.

At each program point, each register holds at most one live
variable.

• No two variables with overlapping live intervals placed in
the same register.

20

Correctness Proof

At each program point, each variable must be in the same
location.

• All variables assigned a unique location.

At each program point, each register holds at most one live
variable.

• No two variables with overlapping live intervals placed in
the same register.

20

Correctness Proof

At each program point, each variable must be in the same
location.

• All variables assigned a unique location.

At each program point, each register holds at most one live
variable.

• No two variables with overlapping live intervals placed in
the same register.

20

Graph-coloring Register Allocation

The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

21

The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

21

The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

21

The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

21

The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

21

The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

21

The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

21

The Register Interference Graph

The register interference graph (RIG) of a control-flow graph is
an undirected graph where

• Each node is a variable
• There is an edge between two variables that are live at

the same point

Perform register allocation by assigning each variable a
different register from all of its neighbors.

This problem is equivalent to graph-coloring.

22

The Register Interference Graph

The register interference graph (RIG) of a control-flow graph is
an undirected graph where

• Each node is a variable
• There is an edge between two variables that are live at

the same point

Perform register allocation by assigning each variable a
different register from all of its neighbors.

This problem is equivalent to graph-coloring.

22

The Register Interference Graph

The register interference graph (RIG) of a control-flow graph is
an undirected graph where

• Each node is a variable
• There is an edge between two variables that are live at

the same point

Perform register allocation by assigning each variable a
different register from all of its neighbors.

This problem is equivalent to graph-coloring.

22

Graph Coloring

Graph coloring is NP-complete if there are at least three
registers.

Chaitin’s Algorithm: we can delete the node with fewer than k

edges from the graph and color what remains with k colors.

23

Chaitin’s Algorithm

24

Chaitin’s Algorithm

24

Chaitin’s Algorithm

24

Chaitin’s Algorithm

24

Chaitin’s Algorithm

24

Chaitin’s Algorithm

24

Chaitin’s Algorithm

24

Chaitin’s Algorithm

24

Chaitin’s Algorithm

24

Chaitin’s Algorithm

24

Chaitin’s Algorithm

24

One Problem

What if we can’t find a node with fewer than k neighbors?

Choose and remove an arbitrary node, marking it
troublesome.

When adding node back in, it may be possible to find a valid
color.

Otherwise, we have to spill that node.

25

One Problem

What if we can’t find a node with fewer than k neighbors?

Choose and remove an arbitrary node, marking it
troublesome.

When adding node back in, it may be possible to find a valid
color.

Otherwise, we have to spill that node.

25

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

Chaitin’s Algorithm Reloaded

26

	The Final Exam
	Code Generation
	Naive Register Allocation
	Linear Scan Register Allocation
	Graph-coloring Register Allocation

