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The Final Exam



The Final Exam

75 minutes

Closed book

One double-sided sheet of notes of your own devising

Anything discussed in class is fair game

Little, if any, programming

Details of OCaml/C/C++/Java syntax not required
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Code Generation

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

IR Optimization

Code Generation

0101110101...

front-end

middle-end

back-end
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Code Generation

• Choose the appropriate machine instructions for each IR
instruction.

• Mange finite machine resources (e.g., registers).
• Implement runtime environment.
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The Memory Hierarchy

Memory tradeoffs: there is an enormous tradeoff between
speed and size in memory.

• Registers: 1 ns, 1 KB
• Per-CPU cache: 5 ns, 128 KB
• Shared cache: 25 ns, 6 MB
• Main memory: 100 ns, 16 GB
• Disk: 10 ms, 1 TB
• Network: 100 ms, huge
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The Challenges of Code Generation

Goal: Try to get the best of all worlds by using multiple types
of memory.

Challenges:

• All variables in TAC live in memory.
• Position objects in a way that takes maximum advantage

of the memory hierarchy.
• Do so without hints from the programmer.
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Register Allocation

Using registers intelligently is a critical step in any compiler.

Register allocation is the process of assigning variables to
registers and managing data transfer in and out of registers.

Challenges:

• In TAC, there are an unlimited number of variables.
• On a physical machine there are a small number of

registers.
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Register Allocation

Explore three algorithms for register allocation:

• Naive (“no”) register allocation.
• Linear scan register allocation.
• Graph-coloring register allocation.
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Naive Register Allocation



Naive Register Allocation

Idea: store every value in main memory, loading values only
when they’re needed.

• Insert load to pull the values from memory into registers
before access.

• Insert store to store the values back into memory after
access.
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Naive Register Allocation

a = b + c;

lw $t0, -12(fp)

lw $t1, -16(fp)

add $t2, $t0, $t1

sw $t2, -8(fp)

d = a;

lw $t0, -8(fp)

sw $t0, -20(fp)

10



Naive Register Allocation

a = b + c;

lw $t0, -12(fp)

lw $t1, -16(fp)

add $t2, $t0, $t1

sw $t2, -8(fp)

d = a;

lw $t0, -8(fp)

sw $t0, -20(fp)

10



Naive Register Allocation

a = b + c;

lw $t0, -12(fp)

lw $t1, -16(fp)

add $t2, $t0, $t1

sw $t2, -8(fp)

d = a;

lw $t0, -8(fp)

sw $t0, -20(fp)

10



Naive Register Allocation

Advantages:

• Can easily translate IR to assembly.
• Never need to worry about running out of registers.

Disadvantages:

• Unnecessary loads and stores.
• Wastes space.
• Too slow.
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Linear Scan Register Allocation



A Better Allocator

Goal: try to hold as many variables in registers as possible.

Register consistency:

• At each program point, each variable must be in the same
location.

• At each program point, each register holds at most one
live variable.
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Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

e = d + a;

f = b + c;

f = f + b;

d = e + f;

g = d;
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Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.
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e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

13



Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

a b c d e f g
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Linear Scan
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Another Example
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Register Spilling

If a register cannot be found for a variable v, we may need to
spill a variable.

When a variable is spilled, it is stored in memory rather than a
register.

Spilling is slow, but sometimes necessary.
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Linear Scan Algorithm

Advantages

• Very efficient.
• Produce good code in many instances.
• Can generate code during iteration.

Disadvantages

• Imprecise due to use of live intervals.
• Many techniques can be better.
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Correctness Proof

At each program point, each variable must be in the same
location.

• All variables assigned a unique location.

At each program point, each register holds at most one live
variable.

• No two variables with overlapping live intervals placed in
the same register.
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Graph-coloring Register Allocation



The Register Interference Graph (RIG)
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g = d;

{ g }
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The Register Interference Graph

The register interference graph (RIG) of a control-flow graph is
an undirected graph where

• Each node is a variable
• There is an edge between two variables that are live at

the same point

Perform register allocation by assigning each variable a
different register from all of its neighbors.

This problem is equivalent to graph-coloring.
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Graph Coloring

Graph coloring is NP-complete if there are at least three
registers.

Chaitin’s Algorithm: we can delete the node with fewer than k

edges from the graph and color what remains with k colors.
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Chaitin’s Algorithm
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One Problem

What if we can’t find a node with fewer than k neighbors?

Choose and remove an arbitrary node, marking it
troublesome.

When adding node back in, it may be possible to find a valid
color.

Otherwise, we have to spill that node.
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Chaitin’s Algorithm Reloaded
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