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Announcements



The Virtual Final Exam

Exam Duration: �� minutes via Zoom, cameras must be on.

Exam Type: Closed book, except for one double-sided sheet of
notes prepared by the student.

Materials Needed: �� white A� papers for writing answers.

Submission Instructions:

• Write each problem’s answer on a separate paper sheet.
• Take photographs of your answers.
• Submit a PDF file through the Gradescope platform
immediately after the exam.

• Submission window: �� minutes post-exam.

�



Final Project

Final Report: May �th, ��:�� pm via coursework

Video Submission: �� mins video

• May ��th, ��:�� pm via coursework
• May �th, ��:�� pm for graduating students

Instructions:
https://verigu.github.io/����Spring����/assignments/project.html

�

https://verigu.github.io/4115Spring2024/assignments/project.html


The Big Picture



What is a Programming Language?

A programming language is a notation that a person and a
computer can both understand.

• It allows you to express what is the task to compute
• It allows a computer to execute the computation task

A translator translates what you express to what a computer
can execute.
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What is a Translator?

A programming language is a notation that a person and a
computer can both understand.

• It allows you to express what is the task to compute
• It allows a computer to execute the computation task

A translator translates what you express to what a computer
can execute.
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Scanner

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

Optimization

Code Generation

����������...

front-end

middle-end

back-end
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Lexical Analysis



Lexical Analysis (Scanning)

Translate a stream of characters to a stream of tokens

f o o � = � a + � bar ( 0 , � 42 , � q ) ;

ID EQUALS ID PLUS ID LPAREN NUM COMMA ID
LPAREN SEMI

Token Lexemes Pattern

EQUALS = an equals sign
PLUS + a plus sign
ID a foo bar letter followed by letters or digits
NUM 0 42 one or more digits
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Regular Expressions over an Alphabet ⌃

A standard way to express tokens.

�. ✏ is a regular expression that denotes {✏}
�. If a 2 ⌃, a is an RE that denotes {a}
�. If r and s denote sets L(r) and L(s),

(r) | (s) denotes L(r) [ L(s)

(r)(s) {tu : t 2 L(r), u 2 L(s)}

(r)⇤ [1
i=0L(r)

i

where L(r)0 = {✏}
and L(r)i = L(r)L(r)i�1
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Implementing Scanners Automatically

Regular Expressions (Rules)

Nondeterministic Finite Automata

Deterministic Finite Automata

Tables

Subset Construction
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Translating REs into NFAs (Thompson’s algorithm)

a
a

Symbol

r1r2
r1 r2r1 Sequence

r1 | r2

r1

r2

✏

✏

✏

✏
Choice

(r)⇤ r✏ ✏

✏

✏

Kleene Closure
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Translating REs into NFAs

Example: Translate (a | b)⇤abb into an NFA. Answer:

� �
� �

� �
� � � � ��✏

✏
a

✏
b

✏

✏

✏ a b b

✏

✏

Show that the string “aabb” is accepted. Answer:

� � � � � � � � ��✏ ✏ a ✏ ✏ a b b
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Translating REs into NFAs

Example: Translate (a | b)⇤abb into an NFA. Answer:

� �
� �

� �
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Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states
that appear.

Each unique state during simulation becomes a state in the
DFA.
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Subset construction for (a | b)⇤abb

a

b

a

b

b

a

a

ba

b
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Subset construction for (a | b)⇤abb

a

b

a

b

b

a

a

ba

b
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Subset construction for (a | b)⇤abb

a

b

a

b

b

a

a

ba

b
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Transition Table Used In the Dragon Book

Problem: Translate (a | b)⇤abb into a DFA.

Solution:

� �
� �

� �
� � � � ��✏

✏
a

✏
b

✏

✏

✏ a b b

✏

✏

NFA State DFA State a b

{�,�,�,�,�} A B C
{�,�,�,�,�,�,�} B B D
{�,�,�,�,�,�} C B C
{�,�,�,�,�,�,�} D B E
{�,�,�,�,�,�,��} E B C

A B

C

a

b
D

a
b

b

a

E

a
ba

b
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Transition Table Used In the Dragon Book

Problem: Translate (a | b)⇤abb into a DFA.
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b
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Syntax Analysis



Parser

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

Optimization

Code Generation

����������...

front-end

middle-end

back-end
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Richer Sentences Are Harder

If the boy eats hot dogs, then the girl eats ice cream.

Either the boy eats candy, or every dog eats candy.

Either
If

the
a
every

happy

boy
girl
dog

eats

hot dogs
ice
cream
candy

or
then

Does this work?
Want to remember the state?
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Automata Have Poor Memories

Want to “remember” whether it is an “either-or” or “if-then”
sentence. Only solution: duplicate states.

Either
the
a
every

happy

boy
girl
dog

eats
hot dogs
ice cream
candy

or

If
the
a
every

happy

boy
girl
dog

eats
hot dogs
ice cream
candy

then

the
a
every

happy

boy
girl
dog

eats
hot dogs
ice cream
candy
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Automata in the form of Production Rules

Problem: automata do not remember where they’ve been
S ! Either A

S ! If A
A ! the B

A ! the C

A ! a B

A ! a C

A ! every B

A ! every C

B ! happy B

B ! happy C

C ! boy D

C ! girl D
C ! dog D

D ! eats E

E ! hot dogs F

E ! ice cream F

E ! candy F

F ! or A

F ! then A

F ! ✏

S :

Either
If

A :

the
a
every

B : happy

C :

boy
girl
dog

D : eats

E :

hot dogs
ice cream
candy

F :

or
then

��



Solution: Context-Free Grammars

Context-Free Grammars have the ability to “call subroutines:”

S ! Either P , or P . Exactly two P s

S ! If P , then P .

P ! A H N eats O One each of A, H, N , and O

A ! the

A ! a

A ! every

H ! happy H H is “happy” zero or more times

H ! ✏

N ! boy

N ! girl

N ! dog

O ! hot dogs

O ! ice cream

O ! candy
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An Example

n �’s followed by n �’s, e.g., ������, ��

S ! 0 S 1.

S ! ✏.

What about strings with an equal number of �’s and �’s?
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An Example

n �’s followed by n �’s, e.g., ������, ��

S ! 0 S 1.

S ! ✏.

What about strings with an equal number of �’s and �’s?
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Constructing Grammars and
Ocamlyacc



Parsing

Objective: build an abstract syntax tree (AST) for the token
sequence from the scanner.

2 * 3 + 4 )

+

*

� �

�

Goal: verify the syntax of the program, discard irrelevant
information, and “understand” the structure of the program.

Parentheses and most other forms of punctuation removed.
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The Dangling Else Problem

Who owns the else?

if (a) if (b) c(); else d();

stmt : I F expr THEN stmt
| I F expr THEN stmt ELSE stmt

Problem comes after matching the first statement. Question is
whether an “else” should be part of the current statement or
a surrounding one since the second line tells us “stmt ELSE” is
possible.

��



The Dangling Else Problem

Should this be

if

a if

b c() d()

or

if

a if

b c()

d() ?

Grammars are usually ambiguous; manuals give
disambiguating rules such as C’s:

As usual the “else” is resolved by connecting an else
with the last encountered elseless if.
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The Dangling Else Problem

Idea: break into two types of statements: those that have a
dangling “then” (“dstmt”) and those that do not (“cstmt”). A
statement may be either, but the statement just before an
“else” must not have a dangling clause because if it did, the
“else” would belong to it.

stmt : dstmt
| cstmt

dstmt : I F expr THEN stmt
| I F expr THEN cstmt ELSE dstmt

cstmt : I F expr THEN cstmt ELSE cstmt
| other statements . . .
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The Dangling Else Problem

Idea: break into two types of statements: those that have a
dangling “then” (“dstmt”) and those that do not (“cstmt”). A
statement may be either, but the statement just before an
“else” must not have a dangling clause because if it did, the
“else” would belong to it.

stmt : dstmt
| cstmt

dstmt : I F expr THEN stmt
| I F expr THEN cstmt ELSE dstmt

cstmt : I F expr THEN cstmt ELSE cstmt
| other statements . . .

if (a) if (b) c(); else d();

cstmt?
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Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider parsing

3 - 4 * 2 + 5

with the grammar

e ! e+ e | e� e | e ⇤ e | e / e | N

+

-

3 *

4 2

5

-

3 +

*

4 2

5

*

-

3 4

+

2 5

-

3 *

4 +

2 5

-

*

+

3 4

2

5
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Operator Precedence and Associativity

Usually resolve ambiguity in arithmetic expressions
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Operator Precedence

Defines how sticky an operator is.

1 * 2 + 3 * 4

* at higher precedence than +:

(1 * 2) + (3 * 4)

+

*

� �

*

� �

+ at higher precedence than *:

1 * (2 + 3) * 4

*

*

� +

� �

�

��



Associativity

Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1 - 2 - 3 - 4

-

-

-

1 2

3

4

-

1 -

2 -

3 4

((1� 2)� 3)� 4 1� (2� (3� 4))

left associative right associative
��



Fixing Ambiguous Grammars

A grammar specification:

expr :
expr PLUS expr

| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
| NUMBER

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “�� shift/reduce conflicts.”
1 ⇤ 2 + 3?

expr TIMES expr PLUS shift?

expr TIMES expr PLUS reduce?

��



Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

1 ⇤ 2 + 3?

term TIMES term PLUS cannot shift!

term TIMES term PLUS cannot reduce!

term TIMES term PLUS reduce!

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “� shift/reduce conflicts.”

��



Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

1 ⇤ 2 + 3?

term TIMES term PLUS

cannot shift!

term TIMES term PLUS cannot reduce!

term TIMES term PLUS reduce!

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “� shift/reduce conflicts.”

��



Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

1 ⇤ 2 + 3?

term TIMES term PLUS cannot shift!

term TIMES term PLUS cannot reduce!

term TIMES term PLUS reduce!

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “� shift/reduce conflicts.”

��



Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

1 ⇤ 2 + 3?

term TIMES term PLUS cannot shift!

term TIMES term PLUS

cannot reduce!

term TIMES term PLUS reduce!

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “� shift/reduce conflicts.”

��



Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

1 ⇤ 2 + 3?

term TIMES term PLUS cannot shift!

term TIMES term PLUS cannot reduce!

term TIMES term PLUS reduce!

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “� shift/reduce conflicts.”

��



Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

1 ⇤ 2 + 3?

term TIMES term PLUS cannot shift!

term TIMES term PLUS cannot reduce!

term TIMES term PLUS reduce!

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “� shift/reduce conflicts.”

��



Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

1 ⇤ 2 + 3?

term TIMES term PLUS cannot shift!

term TIMES term PLUS cannot reduce!

term TIMES term PLUS reduce!

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “� shift/reduce conflicts.” ��



Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “� shift/reduce conflicts.”
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term TIMES term TIMES shift?

term TIMES term TIMES reduce?

��



Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term
| expr MINUS term
| term

term : term TIMES atom
| term DIVIDE atom
| atom

atom : NUMBER

This is left-associative.

No shift/reduce conflicts.

1 ⇤ 2 ⇤ 3?

term TIMES atom TIMES cannot shift!

term TIMES atom TIMES cannot reduce!

term TIMES atom TIMES reduce!
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Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term
| expr MINUS term
| term

term : term TIMES atom
| term DIVIDE atom
| atom

atom : NUMBER

This is left-associative.

No shift/reduce conflicts.
1 ⇤ 2 ⇤ 3?

term TIMES atom TIMES cannot shift!

term TIMES atom TIMES cannot reduce!

term TIMES atom TIMES reduce! ��



Parsing Algorithms



Shift/Reduce Parsing Using an Oracle

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

e
t + e
t + t

t + Id
Id ⇤ t + Id
Id ⇤ Id + Id

stack input

Id ⇤ Id+ Id shift
Id ⇤ Id+ Id shift

Id ⇤ Id+ Id shift
Id ⇤ Id+ Id reduce �
Id ⇤ t+ Id reduce �

t+ Id shift
t+ Id shift

t+ Id reduce �
t+ t reduce �
t+ e reduce �

e accept ��



The Handle-Identifying Automaton

Magical result, due to Knuth: An automaton su�ces to locate a
handle in a right-sentential form.

Id ⇤ Id ⇤ · · · ⇤ Id ⇤ t · · ·
Id ⇤ Id ⇤ · · · ⇤ Id · · ·
t+ t+ · · ·+ t+ e

t+ t+ · · ·+ t+ Id
t+ t+ · · ·+ t+ Id ⇤ Id ⇤ · · · ⇤ Id ⇤ t
t+ t+ · · ·+ t

e

Id

t

Id ⇤ t

t+ e

e

t

+t

e

Id
Id

⇤Id

t

e

��



Building the Initial State of the LR(�) Automaton

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

e0 ! e

e ! t+ e

e ! t

t ! Id ⇤ t
t ! Id

Key idea: automata identify viable prefixes of right sentential forms.
Each state is an equivalence class of possible places in productions.
At the beginning, any viable prefix must be at the beginning of a
string expanded from e. We write this condition “e0 ! e”

There are two choices for what an e may expand to: t+ e and t. So
when e0 ! e, e ! t+ e and e ! t are also true, i.e., it must start
with a string expanded from t.
Also, t must be Id ⇤ t or Id, so t ! Id ⇤ t and t ! Id.
This is a closure, like ✏-closure in subset construction.
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Building the LR(�) Automaton

S� :

e0 ! e

e ! t+ e

e ! t

t ! Id ⇤ t
t ! Id

S� : t ! Id ⇤ t
t ! Id

S� : e0 ! e

S� :
e ! t + e

e ! t

e

Id

t

S� :

t ! Id ⇤ t

t ! Id ⇤ t
t ! Id

S� :

e ! t+ e

e ! t+ e

e ! t

t ! Id ⇤ t
t ! Id

⇤

+

S� : t ! Id ⇤ tt

Id

S� : e ! t+ e

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a prefix
that ended in an Id”

The first state suggests a
viable prefix can start as
any string derived from e,
any string derived from t,
or Id.

The items for these

three states come from
advancing the across
each thing, then
performing the closure
operation (vacuous here).
In S�, a + may be next.
This gives t+ e.

Closure
adds � more items.

In S�, ⇤ may be next, giving
Id ⇤ t

and two others.
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S� : e ! t+ e

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a prefix
that ended in an Id”

The first state suggests a
viable prefix can start as
any string derived from e,
any string derived from t,
or Id. The items for these

three states come from
advancing the across
each thing, then
performing the closure
operation (vacuous here).

In S�, a + may be next.
This gives t+ e.

Closure
adds � more items.

In S�, ⇤ may be next, giving
Id ⇤ t

and two others.
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Building the LR(�) Automaton

S� :

e0 ! e

e ! t+ e

e ! t

t ! Id ⇤ t
t ! Id

S� : t ! Id ⇤ t
t ! Id

S� : e0 ! e

S� :
e ! t + e

e ! t

e

Id

t

S� :

t ! Id ⇤ t

t ! Id ⇤ t
t ! Id

S� :

e ! t+ e

e ! t+ e

e ! t

t ! Id ⇤ t
t ! Id

⇤

+

S� : t ! Id ⇤ tt

Id

S� : e ! t+ e

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a prefix
that ended in an Id”

The first state suggests a
viable prefix can start as
any string derived from e,
any string derived from t,
or Id. The items for these

three states come from
advancing the across
each thing, then
performing the closure
operation (vacuous here).

In S�, a + may be next.
This gives t+ e.

Closure
adds � more items.

In S�, ⇤ may be next, giving
Id ⇤ t

and two others.
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Building the LR(�) Automaton

S� :

e0 ! e

e ! t+ e

e ! t

t ! Id ⇤ t
t ! Id

S� : t ! Id ⇤ t
t ! Id

S� : e0 ! e

S� :
e ! t + e

e ! t

e

Id

t

S� :

t ! Id ⇤ t

t ! Id ⇤ t
t ! Id

S� :

e ! t+ e

e ! t+ e

e ! t

t ! Id ⇤ t
t ! Id

⇤

+

S� : t ! Id ⇤ tt

Id

S� : e ! t+ e

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a prefix
that ended in an Id”

The first state suggests a
viable prefix can start as
any string derived from e,
any string derived from t,
or Id. The items for these

three states come from
advancing the across
each thing, then
performing the closure
operation (vacuous here).

In S�, a + may be next.
This gives t+ e. Closure
adds � more items.

In S�, ⇤ may be next, giving
Id ⇤ t and two others. ��



Building the LR(�) Automaton

S� :

e0 ! e

e ! t+ e

e ! t

t ! Id ⇤ t
t ! Id

S� : t ! Id ⇤ t
t ! Id

S� : e0 ! e

S� :
e ! t + e

e ! t

e

Id

t

S� :

t ! Id ⇤ t

t ! Id ⇤ t
t ! Id

S� :

e ! t+ e

e ! t+ e

e ! t

t ! Id ⇤ t
t ! Id

⇤

+

S� : t ! Id ⇤ tt

Id

S� : e ! t+ e

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a prefix
that ended in an Id”

The first state suggests a
viable prefix can start as
any string derived from e,
any string derived from t,
or Id. The items for these

three states come from
advancing the across
each thing, then
performing the closure
operation (vacuous here).
In S�, a + may be next.
This gives t+ e.

Closure
adds � more items.

In S�, ⇤ may be next, giving
Id ⇤ t

and two others.
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What to do in each state?

S� : t ! Id ⇤ t
t ! Id

⇤

Id 1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

Id ⇤ Id ⇤ · · · ⇤ Id ⇤ t · · ·
Id ⇤ Id ⇤ · · · ⇤ Id · · ·
t+ t+ · · ·+ t+ e

t+ t+ · · ·+ t+ Id
t+ t+ · · ·+ t+ Id ⇤ Id ⇤ · · · ⇤ Id ⇤ t
t+ t+ · · ·+ t

e

Stack Input Action

Id ⇤ Id ⇤ · · · ⇤ Id ⇤ · · · Shift

Id ⇤ Id ⇤ · · · ⇤ Id + · · · Reduce �
Id ⇤ Id ⇤ · · · ⇤ Id Reduce �
Id ⇤ Id ⇤ · · · ⇤ Id Id · · · Syntax Error
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What to do in each state?

S� : t ! Id ⇤ t
t ! Id

⇤

Id 1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

Id ⇤ Id ⇤ · · · ⇤ Id ⇤ t · · ·
Id ⇤ Id ⇤ · · · ⇤ Id · · ·
t+ t+ · · ·+ t+ e

t+ t+ · · ·+ t+ Id
t+ t+ · · ·+ t+ Id ⇤ Id ⇤ · · · ⇤ Id ⇤ t
t+ t+ · · ·+ t

e

Stack Input Action

Id ⇤ Id ⇤ · · · ⇤ Id ⇤ · · · Shift
Id ⇤ Id ⇤ · · · ⇤ Id + · · · Reduce �
Id ⇤ Id ⇤ · · · ⇤ Id Reduce �

Id ⇤ Id ⇤ · · · ⇤ Id Id · · · Syntax Error
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What to do in each state?

S� : t ! Id ⇤ t
t ! Id

⇤

Id 1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

Id ⇤ Id ⇤ · · · ⇤ Id ⇤ t · · ·
Id ⇤ Id ⇤ · · · ⇤ Id · · ·
t+ t+ · · ·+ t+ e

t+ t+ · · ·+ t+ Id
t+ t+ · · ·+ t+ Id ⇤ Id ⇤ · · · ⇤ Id ⇤ t
t+ t+ · · ·+ t

e

Stack Input Action

Id ⇤ Id ⇤ · · · ⇤ Id ⇤ · · · Shift
Id ⇤ Id ⇤ · · · ⇤ Id + · · · Reduce �
Id ⇤ Id ⇤ · · · ⇤ Id Reduce �
Id ⇤ Id ⇤ · · · ⇤ Id Id · · · Syntax Error
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The ���� function

If you can derive a string that starts with terminal t from a sequence of
terminals and nonterminals ↵, then t 2 ����(↵).

�. If X is a terminal, ����(X) = {X}.
�. If X ! ✏, then add ✏ to ����(X).
�. If X ! Y1 · · ·Yk and ✏ 2 ����(Y1), ✏ 2 ����(Y2), . . . , and

✏ 2 ����(Yi�1) for i = 1, . . . , k for some k,
add ����(Yi)� {✏} to ����(X)

X starts with anything that appears after skipping empty strings.
Usually just ����(Y1) ⇢ ����(X)

�. If X ! Y1 · · ·YK and ✏ 2 ����(Y1), ✏ 2 ����(Y2), . . . , and ✏ 2 ����(Yk),
add ✏ to ����(X)

If all of X can be empty, X can be empty

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

����(Id) = {Id}

����(t) = {Id} because t ! Id ⇤ t and t ! Id

����(e) = {Id} because e ! t+ e, e ! t, and
����(t) = {Id}.
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The ���� function

If you can derive a string that starts with terminal t from a sequence of
terminals and nonterminals ↵, then t 2 ����(↵).

�. If X is a terminal, ����(X) = {X}.
�. If X ! ✏, then add ✏ to ����(X).
�. If X ! Y1 · · ·Yk and ✏ 2 ����(Y1), ✏ 2 ����(Y2), . . . , and

✏ 2 ����(Yi�1) for i = 1, . . . , k for some k,
add ����(Yi)� {✏} to ����(X)

X starts with anything that appears after skipping empty strings.
Usually just ����(Y1) ⇢ ����(X)

�. If X ! Y1 · · ·YK and ✏ 2 ����(Y1), ✏ 2 ����(Y2), . . . , and ✏ 2 ����(Yk),
add ✏ to ����(X)

If all of X can be empty, X can be empty

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

����(Id) = {Id}

����(t) = {Id} because t ! Id ⇤ t and t ! Id

����(e) = {Id} because e ! t+ e, e ! t, and
����(t) = {Id}.
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The ������ function

If t is a terminal, A is a nonterminal, and · · ·At · · · can be derived, then
t 2 ������(A).

�. Add � (“end-of-input”) to ������(S) (start symbol).
End-of-input comes after the start symbol

�. For each prod.! · · ·A↵, add ����(↵)� {✏} to ������(A).
A is followed by the first thing after it

�. For each prod. A ! · · ·B or A ! · · ·B↵ where ✏ 2 ����(↵), then add
everything in ������(A) to ������(B).
If B appears at the end of a production, it can be followed by whatever
follows that production

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id
����(t) = {Id}
����(e) = {Id}

������(e) = {$}
������(t) = {

+ , $

}

�. Because e is the start symbol
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The ������ function

If t is a terminal, A is a nonterminal, and · · ·At · · · can be derived, then
t 2 ������(A).

�. Add � (“end-of-input”) to ������(S) (start symbol).
End-of-input comes after the start symbol

�. For each prod.! · · ·A↵, add ����(↵)� {✏} to ������(A).
A is followed by the first thing after it

�. For each prod. A ! · · ·B or A ! · · ·B↵ where ✏ 2 ����(↵), then add
everything in ������(A) to ������(B).
If B appears at the end of a production, it can be followed by whatever
follows that production

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id
����(t) = {Id}
����(e) = {Id}

������(e) = {$}
������(t) = {+

, $

}

�. Because e ! t+ e and ����(+) = {+}
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The ������ function

If t is a terminal, A is a nonterminal, and · · ·At · · · can be derived, then
t 2 ������(A).

�. Add � (“end-of-input”) to ������(S) (start symbol).
End-of-input comes after the start symbol

�. For each prod.! · · ·A↵, add ����(↵)� {✏} to ������(A).
A is followed by the first thing after it

�. For each prod. A ! · · ·B or A ! · · ·B↵ where ✏ 2 ����(↵), then add
everything in ������(A) to ������(B).
If B appears at the end of a production, it can be followed by whatever
follows that production

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id
����(t) = {Id}
����(e) = {Id}

������(e) = {$}
������(t) = {+ , $}

�. Because e ! t and $ 2 ������(e)
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The ������ function

If t is a terminal, A is a nonterminal, and · · ·At · · · can be derived, then
t 2 ������(A).

�. Add � (“end-of-input”) to ������(S) (start symbol).
End-of-input comes after the start symbol

�. For each prod.! · · ·A↵, add ����(↵)� {✏} to ������(A).
A is followed by the first thing after it

�. For each prod. A ! · · ·B or A ! · · ·B↵ where ✏ 2 ����(↵), then add
everything in ������(A) to ������(B).
If B appears at the end of a production, it can be followed by whatever
follows that production

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id
����(t) = {Id}
����(e) = {Id}

������(e) = {$}
������(t) = {+ , $}

Fixed-point reached: applying any rule does not
change any set
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Converting the LR(�) Automaton to an SLR Table

S�

S�: t ! Id·

S�: e ! t·

S�

S�

S�: t ! Id ⇤ t·

S�: e ! t+ e·

S�: e0 ! e·

t

Id

e

⇤

+

Id

t

t

e

Id

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

������(e) = {$}
������(t) = {+, $}

State Action Goto

Id + ⇤ � e t

� s� � �

� r� s� r�
� s� r�
� s� �
� s� � �
� r� r�
� r�
� X

From S�, shift an Id and go to S�;
or cross a t and go to S�; or cross
an e and go to S�. ��



Converting the LR(�) Automaton to an SLR Table

S�

S�: t ! Id·

S�: e ! t·

S�

S�

S�: t ! Id ⇤ t·

S�: e ! t+ e·

S�: e0 ! e·

t

Id

e

⇤

+

Id

t

t

e

Id

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

������(e) = {$}
������(t) = {+, $}

State Action Goto

Id + ⇤ � e t

� s� � �
� r� s� r�

� s� r�
� s� �
� s� � �
� r� r�
� r�
� X

From S�, shift a ⇤ and go to S�; or,
if the next input 2 ������(t),
reduce by rule �. ��



Converting the LR(�) Automaton to an SLR Table

S�

S�: t ! Id·

S�: e ! t·

S�

S�

S�: t ! Id ⇤ t·

S�: e ! t+ e·

S�: e0 ! e·

t

Id

e

⇤

+

Id

t

t

e

Id

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

������(e) = {$}
������(t) = {+, $}

State Action Goto

Id + ⇤ � e t

� s� � �
� r� s� r�
� s� r�

� s� �
� s� � �
� r� r�
� r�
� X

From S�, shift a + and go to S�; or,
if the next input 2 ������(e),
reduce by rule �. ��



Converting the LR(�) Automaton to an SLR Table

S�

S�: t ! Id·

S�: e ! t·

S�

S�

S�: t ! Id ⇤ t·

S�: e ! t+ e·

S�: e0 ! e·

t

Id

e

⇤

+

Id

t

t

e

Id

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

������(e) = {$}
������(t) = {+, $}

State Action Goto

Id + ⇤ � e t
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� r� s� r�
� s� r�
� s� �
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� r� r�
� r�
� X

From S�, shift an Id and go to S�;
or cross a t and go to S�.
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Converting the LR(�) Automaton to an SLR Table

S�

S�: t ! Id·

S�: e ! t·

S�

S�

S�: t ! Id ⇤ t·

S�: e ! t+ e·

S�: e0 ! e·

t

Id

e

⇤

+

Id

t

t

e

Id

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

������(e) = {$}
������(t) = {+, $}

State Action Goto

Id + ⇤ � e t

� s� � �
� r� s� r�
� s� r�
� s� �
� s� � �

� r� r�
� r�
� X

From S�, shift an Id and go to S�;
or cross an e or a t.
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Converting the LR(�) Automaton to an SLR Table

S�

S�: t ! Id·

S�: e ! t·

S�

S�

S�: t ! Id ⇤ t·

S�: e ! t+ e·

S�: e0 ! e·

t

Id

e

⇤

+

Id

t

t

e

Id

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

������(e) = {$}
������(t) = {+, $}

State Action Goto

Id + ⇤ � e t

� s� � �
� r� s� r�
� s� r�
� s� �
� s� � �
� r� r�

� r�
� X

From S�, reduce using rule � if the
next symbol 2 ������(t).
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Converting the LR(�) Automaton to an SLR Table

S�

S�: t ! Id·

S�: e ! t·

S�

S�

S�: t ! Id ⇤ t·

S�: e ! t+ e·

S�: e0 ! e·

t

Id

e

⇤

+

Id

t

t

e

Id

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

������(e) = {$}
������(t) = {+, $}

State Action Goto

Id + ⇤ � e t

� s� � �
� r� s� r�
� s� r�
� s� �
� s� � �
� r� r�
� r�

� X

From S�, reduce using rule � if the
next symbol 2 ������(e).
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Converting the LR(�) Automaton to an SLR Table

S�

S�: t ! Id·

S�: e ! t·

S�

S�

S�: t ! Id ⇤ t·

S�: e ! t+ e·

S�: e0 ! e·

t

Id

e

⇤

+

Id

t

t

e

Id

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

������(e) = {$}
������(t) = {+, $}

State Action Goto

Id + ⇤ � e t

� s� � �
� r� s� r�
� s� r�
� s� �
� s� � �
� r� r�
� r�
� X

If, in S�, we just crossed an e,
accept if we are at the end of the
input. ��



Shift/Reduce Parsing with an SLR Table

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

State Action Goto

Id + ⇤ � e t

� s� � �
� r� s� r�
� s� r�
� s� �
� s� � �
� r� r�
� r�
� X

Stack Input Action

� Id ⇤ Id+ Id $ Shift, goto �

Look at the state on top of the
stack and the next input token.

Find the action (shift, reduce, or
error) in the table.

In this case, shift the token onto
the stack and mark it with state �.

� Id
� ⇤ Id+ Id $ Shift, goto �

� Id
�

⇤
� Id+ Id $ Shift, goto �

� Id
�

⇤
�
Id
� + Id $ Reduce �

� Id
�

⇤
�

t
� + Id $

Reduce �

�
t
� + Id $ Shift, goto �

�
t
�

+
� Id $ Shift, goto �

�
t
�

+
�
Id
� $ Reduce �

�
t
�

+
�

t
� $ Reduce �

�
t
�

+
�

e
� $ Reduce �

�
e
� $ Accept
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Shift/Reduce Parsing with an SLR Table

1 : e! t+ e

2 : e! t

3 : t! Id ⇤ t
4 : t! Id

State Action Goto

Id + ⇤ � e t

� s� � �
� r� s� r�
� s� r�
� s� �
� s� � �
� r� r�
� r�
� X

Stack Input Action

� Id ⇤ Id+ Id $ Shift, goto �

� Id
� ⇤ Id+ Id $ Shift, goto �

� Id
�

⇤
� Id+ Id $ Shift, goto �

� Id
�

⇤
�
Id
� + Id $ Reduce �

� Id
�

⇤
�

t
� + Id $ Reduce �

�
t
� + Id $ Shift, goto �

�
t
�

+
� Id $ Shift, goto �

�
t
�

+
�
Id
� $ Reduce �

�
t
�

+
�

t
� $ Reduce �

�
t
�

+
�

e
� $ Reduce �

�
e
� $ Accept
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Semantic Analysis



Semantic Analysis

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

Optimization

Code Generation

����������...

front-end

middle-end

back-end

�



Static Semantic Analysis

Lexical analysis: Each token is valid?

for �a���� /* i n va l i d tokens */
for break /* va l id Java tokens */

Syntactic analysis: Tokens appear in the correct order?

for break /* i n va l i d syntax */
return � � " f " ; /* va l id Java syntax */

Semantic analysis: Names used correctly? Types consistent?

return � � " f " ; /* i n va l i d */
return � � � � ; /* va l id in Java */

�



What’s Wrong With This?

a + f(b, c)
Scope questions:

Is a defined?

Is f defined?

Are b and c defined?

Type questions:

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?
�



Scope - What names are visible?



Scope

Scope: where/when a name is bound to an object

Useful for modularity: want to keep most things hidden

Scoping Visible Names Depend On
Policy

Static Textual structure of program
Names resolved by compile-time symbol tables
Faster, more common, harder to break programs

Dynamic Run-time behavior of program
Names resolved by run-time symbol tables,
e.g., walk the stack looking for names
Slower, more dynamic

�



Static vs. Dynamic Scope

C

int a � � ;

i n t foo ( ) {
return a ;

}

i n t bar ( ) {
i n t a � �� ;

return foo ( ) ;
}

OCaml

l e t a = 0 in
l e t foo x = a in
l e t bar =

l e t a = 10 in
foo 0

Bash

a��

foo ( )
{
echo �a

}

bar ( )
{
l oca l a���
foo

}

bar
echo �a

��



Symbol Tables by Example: C-style

Implementing C-style scope (during walk over AST):

• Reach a declaration: Add entry to current table
• Enter a “block”: New symbol table; point to previous
• Reach an identifier: lookup in chain of tables

• Leave a block: Local symbol table disappears

i n t x ;
i n t main ( ) {

i n t a = 1 ;
i n t b = 1 ; {

f l o a t b = 2 ;
f o r ( i n t i = 0 ; i < b ; i++) {

i n t b = i ;
. . .

}
}
b + x ;

}

x 7! int

a 7! int, b 7! int

b 7! float

i 7! int b 7! int

��



Types - What operations are
allowed?



Types

A restriction on the possible interpretations of a segment of
memory or other program construct.

Two uses:

Safety: avoids data being treated as
something it isn’t

Optimization: eliminates certain
runtime decisions

��



Type Systems

• A language’s type system specifies which operations are
valid for which types.

• The goal of type checking is to ensure that operations are
used with the correct types.

• Three kinds of languages:
• Statically typed: All or almost all checking of types is done
as part of compilation (C, Java)

• Dynamically typed: Almost all checking of types is done as
part of program execution (Python)

• Untyped: No type checking (machine code)

��



Strongly-typed Languages

Strongly-typed: the type of a value does not change in
unexpected ways.

Is C strongly-typed?

f loa t g ;

union { f l oa t f ; i n t i } u ;

u . i � � ;

g � u . f � � . � � � � � ; /* u . f i s meaningless */

Is Java strongly-typed?

What about Python?
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Solution: Type Environment

Put more information in the rules!

A type environment gives types for free variables .

E ` NUMBER : int

E(x) = T
E ` x : T

E ` expr1 : int E ` expr2 : int
E ` expr1 � expr2 : int
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How To Check Symbols

check: environment! node! typedNode

� � a

+

1 a

check(�, E)
check(�, E) � � : int
check(a, E) � a : E.lookup(a) � a : int
int � int � int
� � + a : int

The environment provides a “symbol table” that holds
information about each in-scope symbol. ��



IR Generation



Intermediate Code Generation

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

Optimization

Code Generation

����������...

front-end

middle-end

back-end
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Intermediate Representation

Suppose we wish to build compilers for n source languages
and m target machines.

Case �: IR present. Need just n front-ends and m back ends.
C x��

C�� ARM

Java MIPS

Go PPC

Objective C RISC-V

IR

| {z }
Language-specific

Frontends

| {z }
Processor-specific

Backends �



Three-Address Code & Static Single Assignment

Most register-based IRs use three-address code:
Arithmetic instructions have (up to) three operands: two
sources and one destination.

SSA Form: each variable in an IR is assigned exactly once

C code:
in t gcd ( i n t a , i n t b )
{
while (a ! � b )
i f (a � b )
b �� a ;

e lse
a �� b ;

return a ;
}

Three-Address:

WHILE: t � sne a, b
bz DONE, t
t � slt a, b
bz ELSE, t
b � sub b, a
jmp LOOP

ELSE: a � sub a, b
LOOP: jmp WHILE
DONE: ret a

SSA:

WHILE: t� � sne a�, b�
bz DONE, t�
t� � slt a�, b�
bz ELSE, t�
b� � sub b�, a�
jmp LOOP

ELSE: a� � sub a�, b�
LOOP: jmp WHILE
DONE: ret a�
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Address

What is an “Address” in Three-Address Code?

• Name: (from the source program) e.g., x, y, z
• Constant: (with explicit primitive type) e.g., �, �, ’a’
• Compiler-generated temporary: (“register”) e.g., t�, t�, t�
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Instructions of Three-Address Code

• x � op y, z: where op is a binary operation
• x � op y: where op is a unary operation
• x � y: copy operation
• jmp L: unconditional jump to label L
• bz L, x: jump to L if x is zero
• bnz L, x: jump to L if x is not zero
• param x, call L, y, return z: function calls
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Three-Address Code (TAC) Generation

Goal: take statements (AST) and produce a sequence of TAC.

Example:
a :� b � c * d;

TAC:
t� � mul c, d
t� � add b, t�
a � t�

Translate expressions and statements
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Algorithm: Syntax-Directed Translation (SDT)

For each expression E, we’ll synthesize two attributes:

• E.addr: the name of the variable (often a temporary
variable)

• E.code: the IR instructions generated from E

SDT: each semantic rule corresponds to actions computing
two attributes with the following auxiliary functions:

• Call NewTemp to create a new temporary variable
• Call Gen: to print a new three-address instruction

Gen(t, “�”, op, x, “,”, y) ) “t � op x, y"
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Syntax-Directed Translation (SDT)

CFG rule: E0 ! id
Actions:

E0.addr :� id
E0.code :� “” empty string

We do not consider scopes here.

Example: E0 � ID(“a”)
E0.addr :� “a”
E0.code :� “” empty string
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Syntax-Directed Translation (SDT)

CFG rule: E0 ! E1 + E2

Actions:
E0.addr :� NewTemp()
E0.code :�E1.code || E2.code ||

Gen(E0.addr, “�”, “add”, E1.addr, “,”, E2.addr)

Example: a � b
E0 � PLUS (E1, E2) E1 � ID(“a”) E2 � ID(“b”)

E1.addr :� “a” E1.code :� “”
E2.addr :� “b” E2.code :� “”
E0.addr :� “t�”

E0.code :� “t� � add a, b”
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Translating Statements



Assignment

CFG rule: S ! id := E

Actions:
S.code :�E.code || Gen(id, “�”, E.addr)

Example: a :� b � c
S � ASG (ID(“a”), E) E �PLUS(ID(“b”), ID(“c”))

E.code :� “t� � add b, c” E.addr :� “t�’
S.code :� “t� � add b, c” || “a � t�”
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IF Statement

AST: IF(E, S)

Generated IR:

E.code
bz Label_End, E.addr
S.code

Label_End:

Example: if (a � b) { a -� b }

t� � slt a, b
bz Label_End, t�
a � sub a, b

Label_End:
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IF-ELSE Statement

AST: IFELSE(E, S1, S2)

Generated IR:

E.code
bz Label_Else, E.addr
S1.code
jmp Label_End

Label_Else:
S2.code

Label_End:
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Loop

AST: WHILE(E, S)

Generated IR:

Label_While:
E.code
bz Label_End, E.addr
S.code
jmp Label_While

Label_End:

��



Function Calls

f (E1, · · · , En)

Generated IR:

En.code
En�1.code
· · ·
E1.code
param En.addr

how to pass parameters?

· · ·
param E1.addr
call f , n
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Basic Blocks

A Basic Block is a sequence of IR instructions
with two properties:

�. The first instruction is the only entry point
(no other branches in; can only start at the beginning)

�. Only the last instruction may a�ect control
(no other branches out)

) If any instruction in a basic block runs, they all do

Typically “arithmetic and memory instructions, then branch”

ENTER: t� � add t�, �
t� � slt t� , ��
bz NEXT, t�
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IR Optimization



IR Optimization

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

IR Optimization

Code Generation

����������...

front-end

middle-end

back-end
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IR Optimization Discussion

Optimal? Undecidable!
Soundness: semantics-preserving
IR optimization v.s. code optimization:

x * 0.5 ) x » 1

Local optimization v.s. global optimization
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Local Optimization



Common Subexpression Elimination

Purpose: remove the duplicate computation of “a op b” in
Three-Address code.

v1 = a op b

. . .

v2 = a op b

If values of v1, a, and b have not changed, rewrite the code:

v1 = a op b

. . .

v2 = v1
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Copy Propagation

If we have

v1 = v2

then as long as v1 and v2 have not changed, we can rewrite

a = ... v1 ...

as

a = ... v2 ...
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Dead Code Elimination

An assignment to a variable v is called dead if its value is
never read anywhere.

��



Implementing Local Optimization



Optimizations and Analyses

Most optimizations are only possible given some analysis of
the program’s behavior.

In order to implement an optimization, we will talk about the
corresponding program analyses.
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Available Expressions

• Both common subexpression elimination and copy
propagation depend on an analysis of the available
expressions in a program.

• An expression is called available if some variable in the
program holds the value of that expression.

• In common subexpression elimination, we replace an
available expression requiring computation by the
variable holding its value.

• In copy propagation, we replace the use of a variable by
the available expression it holds that does not require
computation.
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Finding Available Expressions

• Initially, no expressions are available
• Whenever we execute a statement
a = expr

• Any expression holding a is invalidated.
• The expression a = expr becomes available.

• Algorithm: Iterate across the basic block, beginning with
the empty set of expressions and updating available
expressions at each variable.
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Example: Available Expressions

{ }
a � b;
{ a � b }
c � b;

{ a � b, c � b }
d � a � b;

{ a � b, c � b, d � a � b }
e � a � b;

{ a � b, c � b, d � a � b, e � a � b }
d � b;

{ a � b, c � b, d � b, e � a � b }
f � a � b;

{ a � b, c � b, d � b, e � a � b, f � a � b }
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Live Variables

• The analysis corresponding to dead code elimination is
called liveness analysis.

• A variable is live at a point in a program if later in the
program its value will be read before it is written to again.

• Dead code elimination works by computing liveness for
each variable, then eliminating assignments to dead
variables.
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Computing Live Variables

• To know if a variable will be used at some point, we
iterate across the statements in a block in reverse order.

• Initially, some small set of values are known to be live
(which ones depends on the particular program).

• When we see the statement: a = b op c

• If a is not alive after the statement, skip it.
• Otherwise, If a is alive after the statement

• Just before the statement, a is not alive, since its value is
about to be overwritten.

• Just before the statement, both b and c are alive, since
we’re about to read their values.

• (what if we have a = a op b?)
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Example: Liveness Analysis

a � b;

c � a;

d � b � d;

e � d;

d � b;

f � e � c;
{ d, e }
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Example: Dead Code Elimination

{ b, d }
a � b;
{ b, d }
c � a;
{ b, d }
d � b � d;
{ b, d }
e � d;
{ b, e }
d � b;
{ d, e }
f � e � c;
{ d, e }
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Global Optimization



Global Constant Propagation

Replace each variable that is known to be a constant value
with the constant.
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Global Dead Code Elimination

• Local dead code elimination needed to know what
variables were live on exit from a basic block.

• This information can only be computed as part of a global
analysis.

• How do we modify our liveness analysis to handle a CFG?
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Global Dead Code Elimination

• In a local analysis, each statement has exactly one
predecessor.

• In a global analysis, each statement may have multiple
predecessors.

• A global analysis must combine information from all
predecessors of a basic block.
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Global Dead Code Elimination with Loops

{ }
b � c � d;
c � c � d;
{ }

{ }
a � b � c;
d � a � c;
{ }

{ }
c � a � b;
{ }

{ }
a � a � b;
d � b � c;
{a}
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Global Dead Code Elimination with Loops

{ }
b � c � d;
c � c � d;
{ }

{ }
a � b � c;
d � a � c;
{ }

{ }
c � a � b;
{ }

{a, b}
a � a � b;
d � b � c;
{a}
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Global Dead Code Elimination with Loops

{ }
b � c � d;
c � c � d;
{ }

{b, c}
a � b � c;
d � a � c;
{a, b}

{a, b}
c � a � b;
{a, b}

{a, b}
a � a � b;
d � b � c;
{a}
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Global Dead Code Elimination with Loops

{a, c, d}
b � c � d;
c � c � d;
{a, b, c}

{b, c}
a � b � c;
d � a � c;
{a, b}

{a, b}
c � a � b;
{a, b}

{a, b}
a � a � b;
d � b � c;
{a}
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Global Dead Code Elimination with Loops

{a, c, d}
b � c � d;
c � c � d;
{a, b, c}

{b, c}
a � b � c;
d � a � c;
{a, b}

{a, b}
c � a � b;
{a, b}

{a, b, c}
a � a � b;
d � b � c;
{a, c, d}
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Global Dead Code Elimination with Loops

{a, c, d}
b � c � d;
c � c � d;
{a, b, c}

{b, c}
a � b � c;
d � a � c;
{a, b, c}

{a, b}
c � a � b;
{a, b, c}

{a, b, c}
a � a � b;
d � b � c;
{a, c, d}
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Global Dead Code Elimination with Loops

{a, c, d}
b � c � d;
c � c � d;
{a, b, c}

{b, c}
a � b � c;
d � a � c;
{a, b, c}

{a, b}
c � a � b;
{a, b, c}

{a, b, c}
a � a � b;
d � b � c;
{a, c, d}
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Global Dead Code Elimination with Loops

b � c � d;
c � c � d;

a � b � c; c � a � b;

a � a � b;
d � b � c;

��
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Code Generation

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

IR Optimization

Code Generation

����������...

front-end

middle-end

back-end
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Runtime Environments



Storage Classes and Memory Layout

Code

StaticStatic: objects allocated at compile
time; persist throughout run

Heap
Heap: objects created/destroyed in
any order; automatic garbage
collection optional

Program
break

Stack
Stack: objects created/destroyed in
last-in, first-out order

Stack
pointer

Low
memory

High
memory

�



An Activation Record: The State Before Calling bar

i n t foo ( i n t a , i n t b ) {
i n t c , d ;
bar ( � , � , � ) ;

}

From Callerb
a

Return addr.
Old frame ptr.

Registers

c
d
�
�
�

Frame Ptr.

Stack Ptr.
�



Implementing Nested Functions with Access Links

l e t a x s =

l e t b y =

l e t c z = z + s in

l e t d w = c (w+1) in

d (y+1) in (* b *)

l e t e q = b (q+1) in

e (x+1) (* a *)

What does “a � ��” give?

(access link)
x � �
s � ��

a:
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Implementing Nested Functions with Access Links

l e t a x s =

l e t b y =

l e t c z = z + s in

l e t d w = c (w+1) in

d (y+1) in (* b *)

l e t e q = b (q+1) in

e (x+1) (* a *)

What does “a � ��” give?

(access link)
x � �
s � ��

a:

(access link)
q � �

e:

(access link)
y � �b:

(access link)
w � �

d:

(access link)
z � �

c:
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Layout of Records and Unions

Modern memory systems read
data in ��-, ��-, or ���-bit chunks:

� � � �

� � � �

�� �� � �

Reading an aligned ��-bit value is
fast: a single operation.

� � � �

� � � �

�� �� � �

How about reading an unaligned
value?

� � � �

� � � �

�� �� � �

� � � �
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Padding

To avoid unaligned accesses, the C compiler pads the layout of
unions and records. Rules:

• Each n-byte-aligned object must start on a multiple of n bytes
(no unaligned accesses).

• Any object containing an n-byte-aligned object must be of size
mn for some integer m (aligned even when arrayed).

s t ruc t padded {
i n t x ; /* � bytes */
char z ; /* � byte */
short y ; /* � bytes */
char w ; /* � byte */

} ;

x x x x
y y z

w

st ruc t padded {
char a ; /* � byte */
short b ; /* � bytes */
short c ; /* � bytes */

} ;

b b a

c c
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Padding

To avoid unaligned accesses, the C compiler pads the layout of
unions and records. Rules:

• Each n-byte-aligned object must start on a multiple of n bytes
(no unaligned accesses).

• Any object containing an n-byte-aligned object must be of size
mn for some integer m (aligned even when arrayed).

s t ruc t padded {
i n t x ; /* � bytes */
char z ; /* � byte */
char w ; /* � byte */
short y ; /* � bytes */

} ;

x x x x
y y w z

st ruc t padded {
char a ; /* � byte */
short b ; /* � bytes */
short c ; /* � bytes */

} ;

b b a

c c
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Padding: (�) or (�)?

s t ruc t padded {
i n t a ; /* � bytes */
char b ; /* � byte */
char c ; /* � byte */

} ;

a a a a

c b

(�)

a a a a

c b

(�)
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Heap-Allocated Storage

A heap is a region of memory where blocks can be
dynamically allocated and deallocated in any order.

��



Simple Dynamic Storage Allocation

S N S S N

malloc( )

S S N S S N

free( )

S S N
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Code Generation

int avg (int a, int b) ...
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Intermediate Code Generation

IR Optimization

Code Generation

����������...
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�



A Better Allocator

Goal: try to hold as many variables in registers as possible.

Register consistency:

• At each program point, each variable must be in the same
location.

• At each program point, each register holds at most one
live variable.
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Register Allocation

Explore three algorithms for register allocation:

• Naive (“no”) register allocation.
• Linear scan register allocation.
• Graph-coloring register allocation.

�



Linear Scan
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Live Intervals

Live interval: the smallest subrange of the IR code containing
all a variable’s live ranges.

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

a b c d e f g
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Linear Scan
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Linear Scan
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Linear Scan
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Graph-coloring Register Allocation



The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }
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The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }

��



The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }
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The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }
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The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }
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The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }
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The Register Interference Graph (RIG)

{ d, b, c, a }

e = d + a;

{ e, b, c }

f = b + c;

{ e, f, b }

f = f + b;

{ e, f }

d = e + f;

{ d }

g = d;

{ g }
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The Register Interference Graph

The register interference graph (RIG) of a control-flow graph is
an undirected graph where

• Each node is a variable
• There is an edge between two variables that are live at
the same point

Perform register allocation by assigning each variable a
di�erent register from all of its neighbors.

This problem is equivalent to graph-coloring.
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Chaitin’s Algorithm
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Chaitin’s Algorithm
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Chaitin’s Algorithm
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Chaitin’s Algorithm
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Chaitin’s Algorithm
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Chaitin’s Algorithm
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Chaitin’s Algorithm
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