The Lambda Calculus

Ronghui Gu
Spring 2024

Columbia University

* Course website: https://verigu.github.io/4115Spring2024/

What is the lambda calculus?

The lambda calculus can be called the smallest universal
programming language of the world (by Alonzo Church, 1930s).

What is the lambda calculus?

The lambda calculus can be called the smallest universal
programming language of the world (by Alonzo Church, 1930s).

« syntax: a single function definition scheme

What is the lambda calculus?

The lambda calculus can be called the smallest universal
programming language of the world (by Alonzo Church, 1930s).

« syntax: a single function definition scheme

« semantics: a single transformation rule (variable
substitution)

What is the lambda calculus?

The lambda calculus can be called the smallest universal
programming language of the world (by Alonzo Church, 1930s).

« syntax: a single function definition scheme

« semantics: a single transformation rule (variable
substitution)

« universal: any computable function can be expressed and
evaluated using this formalism.

Lambda Expressions

Function application written in prefix form. “Add x and five”

(+x5) |

Lambda Expressions

Function application written in prefix form. “Add x and five”

(+x5) |

Evaluation: select a redex and evaluate it:

(+ (x56) (x83)) — (+ 30 (x 8 3))
— (430 24)
— 54

Lambda Expressions

Function application written in prefix form. “Add x and five”

(+x5) |

Evaluation: select a redex and evaluate it:

(+ (x56) (x83)) — (+ 30 (x 8 3))
— (430 24)
— 54

Often more than one way to proceed:

(+ (x56) (x83)) = (+ (x5 6) 24)
s (+ 30 24)
— 54

Lambda Abstraction

The only other thing in the lambda calculus is lambda
abstraction: a notation for defining unnamed functions.

(Ax.+ x 1) |

(A x . + z 1)

T 1 R Y N
The function of = that adds z to 1

Lambda Abstraction

The only other thing in the lambda calculus is lambda
abstraction: a notation for defining unnamed functions.

(Ax.+ x 1) |

(A x . + z 1)

T 1 R Y N
The function of = that adds z to 1

Replace the X\ with fun and the dot with an arrow to get a
lambda expression in Ocaml:

fun x -> (+) x 1J

Evaluating Lambda Abstraction

Evaluation of a lambda abstraction—beta-reduction—is just
substitution:

M.+ x1)4— (+41)
— 5 J

Evaluating Lambda Abstraction

Evaluation of a lambda abstraction—beta-reduction—is just
substitution:

M.+ x1)4— (+41)
— 5 J

The argument may appear more than once

M.+ zx)d— (+44)
— 8 J

Evaluating Lambda Abstraction

Evaluation of a lambda abstraction—beta-reduction—is just
substitution:

M.+ x1)4— (+41)
— 5 J

The argument may appear more than once

M.+ zx)d— (+44)
— 8 J

or not at all

(A\r.3)5 3 |

of the Lambda Calculus

expr expr expr
| Avariable . expr
| variable

| (expr)

of the Lambda Calculus

expr u= exprexpr
| Avariable . expr
| variable
| (expr)

Function application binds more tightly than \:

/\x.fga::)\x.((fg) x) |

First-Class Functions

Functions may be arguments (first-class functions)

M. f3)Aze.+21) > (M. + x1)3
—(+31)
— 4

Free and Bound Variables

(Az. + xy)4|

Here, z is like a function argument but y is like a global
variable.

Free and Bound Variables

(Az. + xy)4l

Here, z is like a function argument but y is like a global
variable.

Technically, z occurs bound and y occurs free in

Az.+ zy) |

However, both z and y occur free in

(+zy) |

Beta-Reduction More Formally

(Az.E) F —3 E']

where E’ is obtained from E by replacing every instance of z
that appears free in E with F.

Beta-Reduction More Formally

(Az.E) F —3 E' |

where E’ is obtained from E by replacing every instance of z
that appears free in E with F.

The definition of free and bound mean variables have scopes.
Only the rightmost = appears free in

(Az. + (—ml))x?)J

SO

M. Qz.+ (—21)x3)9— (Az.+ (—21))93
—-+(-91)3
—+383
— 11 8

Another Example

()\x.)\y. + 2 (M. — z3) y)) 56

Another Example

()\x.)\y.+ z ((\z. — z3))56
= (. + 5((e. - 23))) 6

Another Example

()\x.)\y.+ z ((\z. — z3))56

= (. + 5((e. - 23))) 6
— +5((Az. — z 3)6)

5 +5(—63)

—+53

— 8

Alpha-Conversion

One way to confuse yourself less is to do a-conversion:
renaming a A argument and its bound variables. Formal
parameters are only names: they are correct if they are
consistent.

Az.Qz.+ (—21))x3)9

10

Reduction Order

The order in which you reduce things can matter.

Az Ayy) ((Az.z 2) (Az.z 2)) |

Two things can be reduced:

(Az.z 2) (\z.z 2) |

(Az.Ay.y)(--) |

1"

Reduction Order

The order in which you reduce things can matter.

Az Ayy) ((Az.z 2) (Az.z 2)) |

Two things can be reduced:

(Az.z 2) (\z.z 2) |

(Az.Ay.y)(--) |

However,

(Az.z 2) (N\z.2 2) = (A\z.z 2) (A\z.z 2) |

(Az.Ayy)(--) = (Ay.y) |

1"

A lambda expression that cannot be 3-reduced is in normal
form. Thus,

Y.y |
is the normal form of

Az Ay.y) (Az.2 2) (Az.z 2)) |

12

A lambda expression that cannot be 3-reduced is in normal
form. Thus,

Y.y |
is the normal form of

Az Ay.y) (Az.2 2) (Az.z 2)) |

Not everything has a normal form. E.g.,

(Az.z 2) (M\z.z 2) J

can only be reduced to itself, so it never produces an

non-reducible expression.
12

Can a lambda expression have more than one normal form?

13

Can a lambda expression have more than one normal form?

Church-Rosser Theorem | Corollary: No expression
may have two distinct normal forms. J

13

Normal-Order Reduction

Not all expressions have normal forms, but is there a reliable
way to find the normal form if it exists?

Church-Rosser Theorem ll: If £; — E5 and Es isin normal form,
then there exists a normal order reduction sequence from E;
to Fs.

Normal order reduction: reduce the leftmost outermost redex.

14

Normal-Order Reduction

(()\x.(()\w.)\z. + w 2) 1)) ((Az.z z)(Az x))) ((Ay.+ y 1)(+23)) J

leftmost outermost

leftmost innermost /\x)\m 3
+ 2

‘ Z’JZ(L’HZ’+

Az

A,

+ w

15

Boolean Logic in the Lambda Calculus

“Church Booleans”

true = Az \y.z
false = Az \y.y J

Each is a function of two arguments: true is select first; false is
select second.

16

Boolean Logic in the Lambda Calculus

“Church Booleans”

true = Az \y.z
false = Az \y.y J

Each is a function of two arguments: true is select first; false is
select second. If-then-else uses its predicate to select then or
else:

ifelse = A\p.A\a.\b.pab |

16

Boolean Logic in the Lambda Calculus

“Church Booleans”

true = Az \y.z
false = Az \y.y J

Each is a function of two arguments: true is select first; false is
select second. If-then-else uses its predicate to select then or

else:
ifelse = A\p.A\a.\b.pab |

ifelse true 42 58 = true 42 58
— (Az.\y. x) 42 58
— (A\y.42) 58 — 42

E.g.,
16

Boolean Logic in the Lambda Calculus

Logic operators? and p g

17

Boolean Logic in the Lambda Calculus

Logic operators? and p g

andpg= pqp |

17

Boolean Logic in the Lambda Calculus

Logic operators? and p g

andpg= pqp |

and = A\p.M\g.pgp |

17

Boolean Logic in the Lambda Calculus

Logic operators? and p g

andpg= pqp |

and = A\p.M\g.pgp |

and true false = (Ap.\q. p g p) true false
— true false true
— (Az.\y. z) false true
— false

17

Boolean Logic in the Lambda Calculus

Logic operators? or p q

18

Boolean Logic in the Lambda Calculus

Logic operators? or p q

orpq= pPQJ

18

Boolean Logic in the Lambda Calculus

Logic operators? or p q

orpq= pPQJ

or=Ap.\q¢.ppq J

18

Boolean Logic in the Lambda Calculus

Logic operators? or p q

orpq= pPQJ

or=Ap.\q¢.ppq J

or false true = (Ap.A\q. p p q) false true
— false false true
— (Az.\y. y) false true
— true

18

Boolean Logic in the Lambda Calculus

Logic operators? (not p) a b

19

Boolean Logic in the Lambda Calculus

Logic operators? (not p) a b

notpab= pbaJ

19

Boolean Logic in the Lambda Calculus

Logic operators? (not p) a b

notpab= pbaJ

not = Ap.Aa.\b. pba J

19

Boolean Logic in the Lambda Calculus

Logic operators? (not p) a b

notpab= pbaJ

not = Ap.Aa.\b. pba J

nottrue = (Ap.Aa.Ab. pba)true
—g Aa.\b. true b a
—g Aa.\b. b
—a Az \y. y = false

19

Arithmetic: The Church Numerals

0=AfAz.x
1=Af) x.fx
2=AfAz.f(fx)
3=AAz.f(f(fz))

20

Arithmetic: The Church Numerals

0=AfAz.x
1=Af) x.fx
2=AfAz.f(fx)
3=AAz.f(f(fz))

le,forn=0,1,2,...,n, fr = f(x).

20

Arithmetic: The Church Numerals

0=AfAz.x
1=Af) x.fx
2=AfAz.f(fx)
3=AAz.f(f(fz))

le, forn=0,1,2,...,n, fr = f™ (x).The successor function:

succ = \nAfAz. f (n f x) |

succ2 = (MAf Az f (n fx))2
— Az f (2 f)

= Af.)\z. f(()\f/\w f(f x)) fx)
— Mz f(f (fz)) =3

20

Adding Church Numerals

Finally, we can add:

21

Adding Church Numerals

Finally, we can add:

plus = AmAnAf x.m f (n f x) |

Not surprising since f(™ o f() = f(m+n)

21

Adding Church Numerals

Finally, we can add:

plus = AmAnAf x.m f (n f x) |

Not surprising since f(™ o f() = f(m+n)

plus11 = (AmAnAfAz.m f(n fxz)) 1l
SAfA 1 f (1 fx)
SAfz. f (1 f)
— Az, f (f z)
=y

21

Multiplying Church Numerals

We can multiply:

22

Multiplying Church Numerals

We can multiply:

mult = Am.\n.Af. m (n f) J

22

Multiplying Church Numerals

We can multiply:

mult = Am.\n.Af. m (n f) J

mult23 = (AmAnAf.m(n f)) 23
= M. 23 f)
— Af.2 (Az. f(f(f 2)))
a M2 My fF(F(fY))
— A Az (Ay. f(f(fy) (Qy. fF(f(fy)z)
= Az (M. f(f(Fy) (F(f(f2)))
— AfAz. f(f(f(f(f(f z)))))
=6

22

Multiplying Church Numerals

We can multiply:

mult = Am.AnAfAz. m (n f) x |

mult23 = (AmAnAfAz.m (n f) z) 23
= M. 23 f)x

= A x. 2 (M. f(f(fx)))=x

fy))

)
“a A Az 2 Ay f(F(fy)
= M.z (Ay- f(F(f) (- F(F(f 9))))
= Afe Ay f(F(f 9) (F(F(S ©)))
= Afae f(FUFFF()

6

23

The Y Combinator

Y Combinator: The function that takes a function f and
returns f(f(f(f(---)))), for recursion.

Y =Af.(A\z. f (zz))(Az. f (z2)) |

Y H= ()\f.()\a:. fzz)(Az. f(z x))) H
o H (Y H)

24

Alonzo Church

1903-1995
Professor at Princeton (1929-1967)

and UCLA (1967-1990)
‘ Invented the Lambda Calculus

Had a few successful graduate students, including

- Stephen Kleene (Regular expressions)
« Michael 0. Rabinf (Nondeterministic automata)

« Dana Scott' (Formal programming language semantics)
« Alan Turing (Turing machines)

 Turing award winners

25

Turing Machines vs. Lambda Calculus

In 1936,

« Alan Turing invented the Turing
machine

+ Alonzo Church invented the
lambda calculus

In 1937, Turing proved that the two models were equivalent,
i.e., that they define the same class of computable functions.

Modern processors are just overblown Turing machines.

Functional languages are just the lambda calculus with a more

