
∗ Course website: https://verigu.github.io/4115Spring2024/

Basic Elements of Programming Languages

Ronghui Gu
Spring 2024

Columbia University

1

https://verigu.github.io/4115Spring2024/

What is a Programming Language?

A programming language is a notation that a person and a
computer can both understand.

• It allows you to express what is the task to compute
• It allows a computer to execute the computation task

2

What is a Programming Language?

A programming language is a notation that a person and a
computer can both understand.

• It allows you to express what is the task to compute

• It allows a computer to execute the computation task

2

What is a Programming Language?

A programming language is a notation that a person and a
computer can both understand.

• It allows you to express what is the task to compute
• It allows a computer to execute the computation task

2

Language Specifications

How to Define a Language

When designing a language, it’s a good idea to start by
sketching forms that you want to appear in your language as
well as forms you do not want to appear.

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

Examples

a i n t vg (i n t a ,
{

return (a ; + b)
{ {

Non-Examples

3

How to Define a Language

When designing a language, it’s a good idea to start by
sketching forms that you want to appear in your language as
well as forms you do not want to appear.

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

Examples

a i n t vg (i n t a ,
{

return (a ; + b)
{ {

Non-Examples

3

How to Define a Language

When designing a language, it’s a good idea to start by
sketching forms that you want to appear in your language as
well as forms you do not want to appear.

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

Examples

a i n t vg (i n t a ,
{

return (a ; + b)
{ {

Non-Examples

3

How to Define a Language

• An official documents, with informal descriptions.
• An official documents, with formal descriptions.
• A reference implementation, e.g., a compiler.

Some language definitions are sanctioned by an official
standards organization, e.g., C11 (ISO/IEC 9899:2011).

i n t compare ()
{

i n t a [1 0] , b [1 0] ;
i f (a > b)

return t rue ;
return f a l s e ;

}

undefined behavior, e.g., division by zero
implementation-defined behavior, e.g., identifier characters
unspecified behavior, e.g., evaluation order of subexp

4

How to Define a Language

• An official documents, with informal descriptions.
• An official documents, with formal descriptions.
• A reference implementation, e.g., a compiler.

Some language definitions are sanctioned by an official
standards organization, e.g., C11 (ISO/IEC 9899:2011).

i n t compare ()
{

i n t a [1 0] , b [1 0] ;
i f (a > b)

return t rue ;
return f a l s e ;

}

undefined behavior, e.g., division by zero
implementation-defined behavior, e.g., identifier characters
unspecified behavior, e.g., evaluation order of subexp

4

How to Define a Language

• An official documents, with informal descriptions.
• An official documents, with formal descriptions.
• A reference implementation, e.g., a compiler.

Some language definitions are sanctioned by an official
standards organization, e.g., C11 (ISO/IEC 9899:2011).

i n t compare ()
{

i n t a [1 0] , b [1 0] ;
i f (a > b)

return t rue ;
return f a l s e ;

}

undefined behavior, e.g., division by zero

implementation-defined behavior, e.g., identifier characters
unspecified behavior, e.g., evaluation order of subexp

4

How to Define a Language

• An official documents, with informal descriptions.
• An official documents, with formal descriptions.
• A reference implementation, e.g., a compiler.

Some language definitions are sanctioned by an official
standards organization, e.g., C11 (ISO/IEC 9899:2011).

i n t compare ()
{

i n t a [1 0] , b [1 0] ;
i f (a > b)

return t rue ;
return f a l s e ;

}

undefined behavior, e.g., division by zero
implementation-defined behavior, e.g., identifier characters

unspecified behavior, e.g., evaluation order of subexp

4

How to Define a Language

• An official documents, with informal descriptions.
• An official documents, with formal descriptions.
• A reference implementation, e.g., a compiler.

Some language definitions are sanctioned by an official
standards organization, e.g., C11 (ISO/IEC 9899:2011).

i n t compare ()
{

i n t a [1 0] , b [1 0] ;
i f (a > b)

return t rue ;
return f a l s e ;

}

undefined behavior, e.g., division by zero
implementation-defined behavior, e.g., identifier characters
unspecified behavior, e.g., evaluation order of subexp

4

Aspects of Language Specifications

Syntax Semantics Pragmatics

• Syntax: the form of programming languages.
• Semantics: the meaning of programming languages.
• Pragmatics: the implementation of programming

languages.

5

Aspects of Language Specifications

Syntax Semantics Pragmatics

• Syntax: the form of programming languages.

• Semantics: the meaning of programming languages.
• Pragmatics: the implementation of programming

languages.

5

Aspects of Language Specifications

Syntax Semantics Pragmatics

• Syntax: the form of programming languages.
• Semantics: the meaning of programming languages.

• Pragmatics: the implementation of programming
languages.

5

Aspects of Language Specifications

Syntax Semantics Pragmatics

• Syntax: the form of programming languages.
• Semantics: the meaning of programming languages.
• Pragmatics: the implementation of programming

languages.

5

Syntax

Syntax is divided into:

• Microsyntax

: specifies how the characters in the source
code stream are grouped into tokens.

• Abstract syntax

: specifies how the tokens are grouped
into phrases, e.g., expressions, statements, etc.

6

Syntax

Syntax is divided into:

• Microsyntax: specifies how the characters in the source
code stream are grouped into tokens.

• Abstract syntax

: specifies how the tokens are grouped
into phrases, e.g., expressions, statements, etc.

6

Syntax

Syntax is divided into:

• Microsyntax: specifies how the characters in the source
code stream are grouped into tokens.

• Abstract syntax: specifies how the tokens are grouped
into phrases, e.g., expressions, statements, etc.

6

Microsytax

Source program is just a sequence of characters.

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

i n t SP a v g (i n t SP a , SP i n t SP b) NL
{ NL
SP SP r e t u r n SP (a SP + SP b) SP / SP 2 ; NL
} NL

7

Microsytax

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

Token Lexemes Pattern (as regular expressions)
ID avg, a, b letter followed by letters or digits
KEYWORD int, return letters
NUMBER 2 digits
OPERATOR +, / +, /
PUNCTUATION ;,(,),{,}, ;,(,),{,},

int avg (int a , int b) { return (a + b

) / 2 ; }

8

Lexical Analysis Gives Tokens

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

int avg (int a , int b) { return (a + b

) / 2 ; }

• Throw errors when failing to create tokens: malformed
numbers (e.g., 23fg) or invalid characters (such as
non-ASCII characters in C).

9

Abstract Syntax

Abstract Syntax can be defined using Context Free Grammar.
Nonterminals can always be replaced using the rules,
regardless of their contexts.

expr :
expr OPERATOR expr

| (expr)
| NUMBER
| ID

Expression (a+ b)/2 can be parsed into an AST:

/

+

a b

2

10

Abstract Syntax

Abstract Syntax can be defined using Context Free Grammar.
Nonterminals can always be replaced using the rules,
regardless of their contexts.

expr :
expr OPERATOR expr

| (expr)
| NUMBER
| ID

Ambiguous! What about a+ b/2 ?

/

+

a b

2

+

a /

b 2
10

Syntax Analysis Gives an Abstract Syntax Tree

func

int avg args

arg

int a

arg

int b

return

/

+

a b

2

i n t avg (i n t a , i n t b)
{

return (a + b) / 2 ;
}

• Syntax analysis will throw
errors if “}” is missing. Lexical
analysis will not.

11

Semantics

• Static Semantics

: deals with legality rules—things you
can check before running the code (compile time), e.g.,
type, scope, for some languages.

• Dynamic Semantics

: deals with the execution behavior;
things that can only be known at runtime, e.g., value.

12

Semantics

• Static Semantics: deals with legality rules—things you
can check before running the code (compile time), e.g.,
type, scope, for some languages.

• Dynamic Semantics

: deals with the execution behavior;
things that can only be known at runtime, e.g., value.

12

Semantics

• Static Semantics: deals with legality rules—things you
can check before running the code (compile time), e.g.,
type, scope, for some languages.

• Dynamic Semantics: deals with the execution behavior;
things that can only be known at runtime, e.g., value.

12

Static Semantics

We can use inference rules to define semantics, e.g., type:

NUMBER : int
expr : int

(expr) : int

expr1 : int expr2 : int
expr1 OPERATOR expr2 : int

13

Semantic Analysis: Resolve Symbols; Verify Types

Symbol Table

int a

int b

func

int avg args

arg

int a

arg

int b

return

/

+

a b

2

14

Dynamic Semantics

We can use inference rules to define semantics, e.g., value:

eval(NUMBER) = NUMBER
eval(expr) = n

eval((expr)) = n

eval(expr1) = n1 eval(expr2) = n2

eval(expr1 + expr2) = n1 + n2

15

Dynamic Semantics

Consider the integer range?

eval(NUMBER) = NUMBER
eval(expr) = n

eval((expr)) = n

eval(expr1) = n1 eval(expr2) = n2

eval(expr1 + expr2) = n1 + n2

15

Dynamic Semantics

Consider the integer range:

wrap(NUMBER) = n

eval(NUMBER) = n

eval(expr) = n

eval((expr)) = n

eval(expr1) = n1 eval(expr2) = n2 wrap(n1 + n2) = n

eval(expr1 + expr2) = n

16

Programming Paradigms

Programming Paradigms

A programming paradigm is a style, or “way,” of programming.
Some languages make it easy to write in some paradigms but
not others.

17

Imperative Programming

An imperative program specifies how a computation is to be
done: a sequence of statements that update state.

result = []
i = 0
numStu = len (students)

start :
i f i >= numStu goto finished
name = students [i]
nameLength = len (name)
i f nameLength <= 5 goto nextOne
addToList (result , name)

nextOne :
i = i + 1
goto start

finished :
return result

18

Structured Programming

A kind of imperative programming with clean, goto-free,
nested control structures. Go To Statement Considered
Harmful by Dijkstra.

r e s u l t = []
for i in range (len (students)) :

name = students [i]
i f len (name) > 5 :

addToList (resu l t , name)
p r i n t (r e s u l t)

19

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

Structured Programming

cppreference.com:
[Goto statement is] used when it is otherwise impos-
sible to transfer control to the desired location using
other statements.

C tutorials:
Use of goto statement is highly discouraged in any
programming language because it makes difficult to
trace the control flow of a program, making the pro-
gram hard to understand and hard to modify. Any pro-
gram that uses a goto can be rewritten to avoid them.

20

Procedural Programming

Imperative programming with procedure calls.

def f i l t e r L i s t (students) :
r e s u l t = []
for name in students :

i f len (name) > 5 :
addToList (resu l t , name)

return r e s u l t

p r i n t (f i l t e r L i s t (students))

21

Object-Oriented Programming

An object-oriented program does its computation with
interacting objects.

c lass Student :
def _ _ i n i t _ _ (s e l f , name) :

s e l f . name = name
s e l f . department = " CS "

def f i l t e r L i s t (students) :
r e s u l t = []
for student in students :

i f student . name . __len__ () > 5 :
r e s u l t . append (student . name)

return r e s u l t

p r i n t (f i l t e r L i s t (students))

22

Declarative Programming

A declarative program specifies what computation is to be
done. It expresses the logic of a computation without
describing its control flow.

se lec t name
from students
where length (name) > 5

23

Functional Programming

A functional program treats computation as the evaluation of
mathematical functions and avoids side effects.

def isNameLong (name) :
return len (name) > 5

p r i n t (
l i s t (

f i l t e r (isNameLong , students)))

24

Functional Programming

Using lambda calculus:

p r i n t (
l i s t (

f i l t e r (lambda name : len (name) >5 , students)))

25

Functional Programming

Using function composition:

compose (pr int , l i s t , f i l t e r * (lambda name : len (name) > 5))
(students)

∗A variant of the built-in filter.

26

	Language Specifications
	Programming Paradigms

