
∗ Course website: https://verigu.github.io/4115Spring2024/

IR Optimization

Ronghui Gu
Spring 2024

Columbia University

1

https://verigu.github.io/4115Spring2024/

IR Optimization

int avg (int a, int b) ...

Lexical Analysis

Syntax Analysis

Semantic Analysis

Intermediate Code Generation

IR Optimization

Code Generation

0101110101...

front-end

middle-end

back-end

2

IR Optimization

Goal

• Runtime
• Memory usage
• Power Consumption

Sources?

3

Optimizations from IR Generation

C code:
i n t x ;
i n t y ;
bool b1 ;
bool b2 ;
bool b3 ;
b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

Three-Address:

_t0 = x + x;
_t1 = y ;
b1 = _t0 < _t1 ;
_t2 = x + x;
_t3 = y ;
b2 = _t2 == _t3;
_t4 = x + x;
_t5 = y ;
b3 = _t5 < _t4;

4

Optimizations from IR Generation

C code:
i n t x ;
i n t y ;
bool b1 ;
bool b2 ;
bool b3 ;
b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

Three-Address:

_t0 = x + x;
_t1 = y ;
b1 = _t0 < _t1 ;
_t2 = x + x;
_t3 = y;
b2 = _t2 == _t3;
_t4 = x + x;
_t5 = y;
b3 = _t5 < _t4;

5

Optimizations from IR Generation

C code:
i n t x ;
i n t y ;
bool b1 ;
bool b2 ;
bool b3 ;
b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

Three-Address:

_t0 = x + x;
_t1 = y ;
b1 = _t0 < _t1 ;

b2 = _t0 == _t1;

b3 = _t0 < _t1;

6

Optimizations from Lazy Coders

C code:
while (x < y + z) {

x = x − y ;
}

Three-Address:

_L0:
_t0 = y + z;
_t1 = x < _t0;
bz _L1 _t1 ;
x = x − y;
jmp _L0;

_L1 :

7

Optimizations from Lazy Coders

C code:
while (x < y + z) {

x = x − y ;
}

Three-Address:

_L0:
_t0 = y + z;
_t1 = x < _t0;
bz _L1 _t1 ;
x = x − y;
jmp _L0;

_L1 :

8

Optimizations from Lazy Coders

C code:
while (x < y + z) {

x = x − y ;
}

Three-Address:

_t0 = y + z;
_L0:

_t1 = x < _t0;
bz _L1 _t1 ;
x = x − y;
jmp _L0;

_L1 :

9

IR Optimization Discussion

Optimal? Undecidable!

Soundness: semantics-preserving

IR optimization v.s. code optimization:

x * 0.5 ⇒ x » 1

Local optimization v.s. global optimization

10

Local Optimization

i n t main () {
i n t y ;
i n t z ;
y = 1 3 7 ;
i f (x == 0)
z = y ;

e lse
x = y ;

}

START:

t0 = 137;
y = t0;
bz L0 x;

t1 = y;
z = t1;

t2 = y;
x = t2;

END:

11

Local Optimization

i n t main () {
i n t y ;
i n t z ;
y = 1 3 7 ;
i f (x == 0)
z = y ;

e lse
x = y ;

}

START:

t0 = 137;
y = t0;
bz L0 x;

t1 = y;
z = t1;

t2 = y;
x = t2;

END:

12

Local Optimization

i n t main () {
i n t y ;
i n t z ;
y = 1 3 7 ;
i f (x == 0)
z = y ;

e lse
x = y ;

}

START:

y = 137;
bz L0 x;

t1 = y;
z = t1;

t2 = y;
x = t2;

END:

13

Local Optimization

i n t main () {
i n t y ;
i n t z ;
y = 1 3 7 ;
i f (x == 0)
z = y ;

e lse
x = y ;

}

START:

y = 137;
bz L0 x;

z = y; x = y;

END:

14

Global Optimization

i n t main () {
i n t y ;
i n t z ;
y = 1 3 7 ;
i f (x == 0)
z = y ;

e lse
x = y ;

}

START:

y = 137;
bz L0 x;

z = y; x = y;

END:

15

Global Optimization

i n t main () {
i n t y ;
i n t z ;
y = 1 3 7 ;
i f (x == 0)
z = y ;

e lse
x = y ;

}

START:

bz L0 x;

z = 137; x = 137;

END:

16

Local Optimization

Common Subexpression Elimination

Purpose: remove the duplicate computation of “a op b” in
Three-Address code.

v1 = a op b

. . .

v2 = a op b

If values of v1, a, and b have not changed, rewrite the code:

v1 = a op b

. . .

v2 = v1

17

Common Subexpression Elimination

Purpose: remove the duplicate computation of “a op b” in
Three-Address code.

v1 = a op b

. . .

v2 = a op b

If values of v1, a, and b have not changed, rewrite the code:

v1 = a op b

. . .

v2 = v1

17

Common Subexpression Elimination

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:

_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = a + b;
param _t2;
call f ;

18

Common Subexpression Elimination

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:

_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = a + b;
param _t2;
call f ;

19

Common Subexpression Elimination

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:

_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = _t1 ;?
param _t2;
call f ;

Do we need to replace _t1

with c?

NO!

20

Common Subexpression Elimination

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:

_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = _t1 ;?
param _t2;
call f ;

Do we need to replace _t1

with c? NO!

20

Copy Propagation

If we have

v1 = v2

then as long as v1 and v2 have not changed, we can rewrite

a = ... v1 ...

as

a = ... v2 ...

21

Copy Propagation

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = _t1 ;
param _t2;
call f ;

22

Copy Propagation

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t0 = 4;
a = 4;
_t1 = a + b;
c = _t1 ;
_t2 = _t1 ;
param _t2;
call f ;

23

Copy Propagation

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t0 = 4;
a = 4;
_t1 = a + b;
c = _t1 ;
_t2 = _t1 ;
param _t2;
call f ;

24

Copy Propagation

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t0 = 4;
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t2;
call f ;

25

Copy Propagation

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t0 = 4;
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t2;
call f ;

26

Copy Propagation

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t0 = 4;
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t1;
call f ;

27

Dead Code Elimination

An assignment to a variable v is called dead if its value is
never read anywhere.

28

Dead Code Elimination

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t0 = 4;
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t1;
call f ;

29

Dead Code Elimination

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t0 = 4;
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t1;
call f ;

30

Dead Code Elimination

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
a = 4;
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t1;
call f ;

31

Dead Code Elimination

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t1 = 4 + b;
c = _t1 ;
_t2 = _t1 ;
param _t1;
call f ;

32

Dead Code Elimination

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t1 = 4 + b;
_t2 = _t1 ;
param _t1;
call f ;

33

Dead Code Elimination

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:
_t1 = 4 + b;
param _t1
call f ;

34

For Comparison

C code:
i n t a ;
i n t b ;
i n t c ;
a = 4 ;
c = a + b ;
f (a + b) ;

Three-address code:

_t0 = 4;
a = _t0;
_t1 = a + b;
c = _t1 ;
_t2 = a + b;
param _t2;
call f ;

Optimized code:

_t1 = 4 + b;
param _t1;
call f ;

35

Other Types of Local Optimization

Arithmetic simplication:

• e.g., rewrite x = 4 * a as x = a « 2

Constant folding:

• e.g., rewrite x = 4 * 5 as x = 20

36

Implementing Local Optimization

Optimizations and Analyses

Most optimizations are only possible given some analysis of
the program’s behavior.

In order to implement an optimization, we will talk about the
corresponding program analyses.

37

Available Expressions

• Both common subexpression elimination and copy
propagation depend on an analysis of the available
expressions in a program.

• An expression is called available if some variable in the
program holds the value of that expression.

• In common subexpression elimination, we replace an
available expression requiring computation by the
variable holding its value.

• In copy propagation, we replace the use of a variable by
the available expression it holds that does not require
computation.

38

Available Expressions

• Both common subexpression elimination and copy
propagation depend on an analysis of the available
expressions in a program.

• An expression is called available if some variable in the
program holds the value of that expression.

• In common subexpression elimination, we replace an
available expression requiring computation by the
variable holding its value.

• In copy propagation, we replace the use of a variable by
the available expression it holds that does not require
computation.

38

Available Expressions

• Both common subexpression elimination and copy
propagation depend on an analysis of the available
expressions in a program.

• An expression is called available if some variable in the
program holds the value of that expression.

• In common subexpression elimination, we replace an
available expression requiring computation by the
variable holding its value.

• In copy propagation, we replace the use of a variable by
the available expression it holds that does not require
computation.

38

Available Expressions

• Both common subexpression elimination and copy
propagation depend on an analysis of the available
expressions in a program.

• An expression is called available if some variable in the
program holds the value of that expression.

• In common subexpression elimination, we replace an
available expression requiring computation by the
variable holding its value.

• In copy propagation, we replace the use of a variable by
the available expression it holds that does not require
computation.

38

Finding Available Expressions

• Initially, no expressions are available

• Whenever we execute a statement
a = expr

• Any expression holding a is invalidated.
• The expression a = expr becomes available.

• Algorithm: Iterate across the basic block, beginning with
the empty set of expressions and updating available
expressions at each variable.

39

Finding Available Expressions

• Initially, no expressions are available
• Whenever we execute a statement
a = expr

• Any expression holding a is invalidated.
• The expression a = expr becomes available.

• Algorithm: Iterate across the basic block, beginning with
the empty set of expressions and updating available
expressions at each variable.

39

Finding Available Expressions

• Initially, no expressions are available
• Whenever we execute a statement
a = expr

• Any expression holding a is invalidated.
• The expression a = expr becomes available.

• Algorithm: Iterate across the basic block, beginning with
the empty set of expressions and updating available
expressions at each variable.

39

Example: Available Expressions

{ }
a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;

40

Example: Available Expressions

{ }
a = b;

{ a = b }
c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;

40

Example: Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

e = a + b;

d = b;

f = a + b;

40

Example: Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

d = b;

f = a + b;

40

Example: Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

f = a + b;

40

Example: Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;

40

Example: Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;

{ a = b, c = b, d = b, e = a + b, f = a + b }
40

Example: Common Subexpression Elimination

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;

{ a = b, c = b, d = b, e = a + b, f = a + b }
41

Example: Common Subexpression Elimination

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = d;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;

{ a = b, c = b, d = b, e = a + b, f = a + b }
42

Example: Common Subexpression Elimination

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = d;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = e;

{ a = b, c = b, d = b, e = a + b, f = a + b }
43

Example: Common Subexpression Elimination

a = b;

c = b;

d = a + b;

e = d;

d = b;

f = e;

44

Example: Copy Propagation

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = d;

d = b;

f = e;

45

Example: Copy Propagation

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = d;

{ a = b, c = b, d = a + b, e = d }
d = b;

f = e;

45

Example: Copy Propagation

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = d;

{ a = b, c = b, d = a + b, e = d }
d = b;

{ a = b, c = b, d = b }
f = e;

45

Example: Copy Propagation

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = d;

{ a = b, c = b, d = a + b, e = d }
d = b;

{ a = b, c = b, d = b }
f = e;

{ a = b, c = b, d = b, f = e }
45

Example: Copy Propagation

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = d;

{ a = b, c = b, d = a + b, e = d }
d = b;

{ a = b, c = b, d = b }
f = e;

{ a = b, c = b, d = b, f=e }
46

Example: Copy Propagation

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = b + b;

{ a = b, c = b, d = a + b }
e = d;

{ a = b, c = b, d = a + b, e = d }
d = b;

{ a = b, c = b, d = b }
f = e;

{ a = b, c = b, d = b, f=e }
47

Live Variables

• The analysis corresponding to dead code elimination is
called liveness analysis.

• A variable is live at a point in a program if later in the
program its value will be read before it is written to again.

• Dead code elimination works by computing liveness for
each variable, then eliminating assignments to dead
variables.

48

Live Variables

• The analysis corresponding to dead code elimination is
called liveness analysis.

• A variable is live at a point in a program if later in the
program its value will be read before it is written to again.

• Dead code elimination works by computing liveness for
each variable, then eliminating assignments to dead
variables.

48

Live Variables

• The analysis corresponding to dead code elimination is
called liveness analysis.

• A variable is live at a point in a program if later in the
program its value will be read before it is written to again.

• Dead code elimination works by computing liveness for
each variable, then eliminating assignments to dead
variables.

48

Computing Live Variables

• To know if a variable will be used at some point, we
iterate across the statements in a block in reverse order.

• Initially, some small set of values are known to be live
(which ones depends on the particular program).

• When we see the statement: a = b op c

• If a is not alive after the statement, skip it.
• Otherwise, If a is alive after the statement

• Just before the statement, a is not alive, since its value is
about to be overwritten.

• Just before the statement, both b and c are alive, since
we’re about to read their values.

• (what if we have a = a op b?)

49

Computing Live Variables

• To know if a variable will be used at some point, we
iterate across the statements in a block in reverse order.

• Initially, some small set of values are known to be live
(which ones depends on the particular program).

• When we see the statement: a = b op c

• If a is not alive after the statement, skip it.
• Otherwise, If a is alive after the statement

• Just before the statement, a is not alive, since its value is
about to be overwritten.

• Just before the statement, both b and c are alive, since
we’re about to read their values.

• (what if we have a = a op b?)

49

Computing Live Variables

• To know if a variable will be used at some point, we
iterate across the statements in a block in reverse order.

• Initially, some small set of values are known to be live
(which ones depends on the particular program).

• When we see the statement: a = b op c

• If a is not alive after the statement, skip it.
• Otherwise, If a is alive after the statement

• Just before the statement, a is not alive, since its value is
about to be overwritten.

• Just before the statement, both b and c are alive, since
we’re about to read their values.

• (what if we have a = a op b?)

49

Example: Liveness Analysis

a = b;

c = a;

d = b + d;

e = d;

d = b;

f = e + c;
{ d, e }

50

Example: Liveness Analysis

a = b;

c = a;

d = b + d;

e = d;

d = b;
{ d, e }

f = e + c;
{ d, e }

50

Example: Liveness Analysis

a = b;

c = a;

d = b + d;

e = d;
{ b, e }
d = b;
{ d, e }

f = e + c;
{ d, e }

50

Example: Liveness Analysis

a = b;

c = a;

d = b + d;
{ b, d }
e = d;
{ b, e }
d = b;
{ d, e }

f = e + c;
{ d, e }

50

Example: Liveness Analysis

a = b;

c = a;
{ b, d }

d = b + d;
{ b, d }
e = d;
{ b, e }
d = b;
{ d, e }

f = e + c;
{ d, e }

50

Example: Liveness Analysis

a = b;
{ b, d }
c = a;

{ b, d }
d = b + d;

{ b, d }
e = d;
{ b, e }
d = b;
{ d, e }

f = e + c;
{ d, e }

50

Example: Liveness Analysis

{ b, d }
a = b;
{ b, d }
c = a;

{ b, d }
d = b + d;

{ b, d }
e = d;
{ b, e }
d = b;
{ d, e }

f = e + c;
{ d, e }

50

Example: Dead Code Elimination

{ b, d }
a = b;
{ b, d }
c = a;

{ b, d }
d = b + d;

{ b, d }
e = d;
{ b, e }
d = b;
{ d, e }

f = e + c;
{ d, e }

51

Example: Dead Code Elimination

{ b, d }
d = b + d;

e = d;

d = b;
{ d, e }

52

Global Optimization

Global Constant Propagation

Replace each variable that is known to be a constant value
with the constant.

53

Global Constant Propagation

START:

a = 6;
x = y;

b = a; c = b;

END: d = x + a

54

Global Constant Propagation

START:

a = 6;
x = y;

b = 6; c = b;

END: d =x + 6

55

Global Dead Code Elimination

• Local dead code elimination needed to know what
variables were live on exit from a basic block.

• This information can only be computed as part of a global
analysis.

• How do we modify our liveness analysis to handle a CFG?

56

Global Dead Code Elimination

• In a local analysis, each statement has exactly one
predecessor.

• In a global analysis, each statement may have multiple
predecessors.

• A global analysis must combine information from all
predecessors of a basic block.

57

Global Dead Code Elimination

START:
{ }
a = 6;
x = y;
{ }

{ }
b = 6;
{ }

{ }
c = b;
{ }

END:
{x, c}
d = x + 6;
{d, c}

58

Global Dead Code Elimination

START:
{ }
a = 6;
x = y;
{ }

{x, c}
b = 6;
{x, c}

{x, b}
c = b;
{x, c}

END:
{x, c}
d = x + 6;
{d, c}

59

Global Dead Code Elimination

START:
{y, b, c}
a = 6;
x = y;
{x, b, c}

{x, c}
b = 6;
{x, c}

{b, c}
c = b;
{x, c}

END:
{x, c}
d = x + 6;
{d, c}

60

Global Dead Code Elimination

START:
x = y;

c = b;

END:
d = x + 6;

61

Global Dead Code Elimination

START:
x = y;

c = b;

END:
d = x + 6;

62

Global Dead Code Elimination with Loops

• Up to this point, we’ve considered loop-free CFGs, which
have only finitely many possible paths.

• Not all possible loops in a CFG can be realized in the
actual program.

• Sound approximation: Assume that every possible path
through the CFG corresponds to a valid execution.
• Includes all realizable paths, but some additional paths as

well.
• May make our analysis less precise (but still sound).
• Makes the analysis feasible; we’ll see how later.

63

Global Dead Code Elimination with Loops

• Up to this point, we’ve considered loop-free CFGs, which
have only finitely many possible paths.

• Not all possible loops in a CFG can be realized in the
actual program.

• Sound approximation: Assume that every possible path
through the CFG corresponds to a valid execution.
• Includes all realizable paths, but some additional paths as

well.
• May make our analysis less precise (but still sound).
• Makes the analysis feasible; we’ll see how later.

63

Global Dead Code Elimination with Loops

• In a local analysis, there is always a well-defined first
statement to begin processing.

• In a global analysis with loops, every basic block might
depend on every other basic block.

• To fix this, we need to assign initial values to all of the
blocks in the CFG

64

Global Dead Code Elimination with Loops

• In a local analysis, there is always a well-defined first
statement to begin processing.

• In a global analysis with loops, every basic block might
depend on every other basic block.

• To fix this, we need to assign initial values to all of the
blocks in the CFG

64

Global Dead Code Elimination with Loops

{ }
b = c + d;
c = c + d;
{ }

{ }
a = b + c;
d = a + c;
{ }

{ }
c = a + b;
{ }

{ }
a = a + b;
d = b + c;
{a}

65

Global Dead Code Elimination with Loops

{ }
b = c + d;
c = c + d;
{ }

{ }
a = b + c;
d = a + c;
{ }

{ }
c = a + b;
{ }

{a, b}
a = a + b;
d = b + c;
{a}

66

Global Dead Code Elimination with Loops

{ }
b = c + d;
c = c + d;
{ }

{b, c}
a = b + c;
d = a + c;
{a, b}

{a, b}
c = a + b;
{a, b}

{a, b}
a = a + b;
d = b + c;
{a}

67

Global Dead Code Elimination with Loops

{a, c, d}
b = c + d;
c = c + d;
{a, b, c}

{b, c}
a = b + c;
d = a + c;
{a, b}

{a, b}
c = a + b;
{a, b}

{a, b}
a = a + b;
d = b + c;
{a}

68

Global Dead Code Elimination with Loops

{a, c, d}
b = c + d;
c = c + d;
{a, b, c}

{b, c}
a = b + c;
d = a + c;
{a, b}

{a, b}
c = a + b;
{a, b}

{a, b, c}
a = a + b;
d = b + c;
{a, c, d}

69

Global Dead Code Elimination with Loops

{a, c, d}
b = c + d;
c = c + d;
{a, b, c}

{b, c}
a = b + c;
d = a + c;
{a, b, c}

{a, b}
c = a + b;
{a, b, c}

{a, b, c}
a = a + b;
d = b + c;
{a, c, d}

70

Global Dead Code Elimination with Loops

{a, c, d}
b = c + d;
c = c + d;
{a, b, c}

{b, c}
a = b + c;
d = a + c;
{a, b, c}

{a, b}
c = a + b;
{a, b, c}

{a, b, c}
a = a + b;
d = b + c;
{a, c, d}

71

Global Dead Code Elimination with Loops

b = c + d;
c = c + d;

a = b + c; c = a + b;

a = a + b;
d = b + c;

72

	Local Optimization
	Implementing Local Optimization
	Global Optimization

