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Static Objects

Examples

class Example {

public static final int a = 3; Static class variable

public void hello() {
System.out.println("Hello");
}

} Information about the
Example class

String constant “Hello”

Advantages
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No out-of-memory danger



Static Objects

class Example {
public static final int a = 3;

public void hello() {
System.out.println("Hello");
}
}

Advantages

Zero-cost memory
management

Often faster access (address a
constant)

No out-of-memory danger

Examples
Static class variable
String constant “Hello”

Information about the
Example class

Disadvantages

Size and number must be
known beforehand

Wasteful



The Stack and Activation Records



Stack-Allocated Objects

Idea: some objects persist from when a procedure is called to
when it returns.



Stack-Allocated Objects

Idea: some objects persist from when a procedure is called to
when it returns.

Naturally implemented with a stack: linear array of memory
that grows and shrinks at only one boundary.

Natural for supporting recursion.

Each invocation of a procedure gets its own frame (activation
record) where it stores its own local variables and
bookkeeping information.



An Activation Record: The State Before Calling bar

b From Caller
a
Return addr. Frame Ptr.

Old frame ptr.

int foo(int a, int b) {

int ¢, d; o
bar(1, 2, 3); Registers

}

S (Nwiaa|n

«<— Stack Ptr.




Recursive Fibonacci

(Real C) (Assembly-like C)
int fib(int n) { int fib(int n) {
int tmp1, tmp2, tmp3;
if (n<2) tmp1 = n < 2;
if (!tmp1) goto L1;
return 1; return 1;
else L1: tmp1 = n - 1;
return tmp2 = fib(tmp1);
fib(n-1) L2: tmp1 = n - 2;
i tmp3 = fib (tmp1);
fib(n-2); L3: tmp1 = tmp2 + tmp3;
return tmp1;
} }
e
fib(3)

fi b(zs }Ib(1)

fib(1)  fib(o) Executing fib(3)



int fib(int n) {
int tmpl, tmp2, tmp3;
tmpl = n < 2;
if ("tmp1l) goto L1;
return 1;

L1: tmpl = n - 1;
tmp2 = fib(tmpl);

L2: tmpl = n - 2;
tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;




n=3 ' |
@ return address  *

int fib(int n) { last frame pointer * ]
int tmpl, tmp2, tmp3; tmp1 =2
tmpl =n < 2; tmp2 =
. tmp3 =
if (Itmp1) goto L1; <o

return 1; E

L1: tmpl =n- 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);
L3: tmpl = tmp2 + tmp3;

return tmpl;



int fib(int n) {

int tmpl, tmp2, tmp3;
tmpl = n < 2;
if (Itmp1) goto L1;

return 1;

L1: tmpl =n- 1;
tmp2 = fib(tmp1); <— |

L2: tmpl = n - 2;

tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;

E return address
last fra inter °

E»
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return address  *

last frame pointer
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tmp2 =

tmp3 =

n=2
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tmp2 =
tmp3 =
n=-1




int fib(int n) {

int tmpl, tmp2, tmp3;

tmpl = n < 2;
if (Itmp1) goto L1;
return 1;
L1: tmpl =n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);

L3: tmpl = tmp2 + tmp3;

return tmpl;

|

n=3

return address  *

last frame pointer
tmp1=2

tmp2 =

tmp3 =

n=2

<

return address
last fra inter ®

tmp1 =1
tmp2 =
tmp3
n=-1

FP

return address  *

last frame pointer *
tmp1 =1

tmp2
tmp3 =




[n=-3

return address  *
int fib(int n) { last frame pointer
int tmpl, tmp2, tmp3; tmp1 =2
mp2 =
tmpl = n < 2; tmp
> tmp3 =
if (!tmpl) goto L1; <o

return 1; L3P return address
L1: tmpl =n - 1; last fra inter ®

tmp2 = fib(tmpl); < |

tmp1=0
L2: tmpl =n - 2; tmp2 =1
tmp3 = fib(tmpl); tmp3 =
n=o0

L3: tmpl = tmp2 + tmp3;

return tmpl; E



int fib(int n) {

int tmpl, tmp2, tmp3;
tmpl = n < 2;

if (Itmp1) goto L1;
return 1;

L1: tmpl =n - 1;
tmp2 = fib(tmpl); < |

L2: tmpl = n - 2;

[n=-3

return address  *

last frame pointer

tmp1=2

tmp2 =

tmp3 =

n=2

return address
M
tmp1=0

tmp2 =1

tmp3 = fib(tmpl); ~——_  |tmp3=

L3: tmpl = tmp2 + tmp3;

return tmpl;

n=o0

E return address  *

last frame pointer
tmp1 =1

tmp2
tmp3 =




[n=-3

return address  *
int fib(int n) { last frame pointer
int tmpl, tmp2, tmp3; tmp1 =2
tmpl = n < 2; tmp2 =
2 tmp3 =
if (!tmpl) goto L1; =

return 1; L3P return address
L1: tmpl =n - 1; last fra inter ®

tmp2 = fib(tmpl); < |

tmp1 =2
L2: tmpl = n - 2; tmp2 =1
tmp3 = fib(tmpl); tmp3 =1

L3: tmpl = tmp2 + tmp3; E
return tmpl;



[n=3
E return address  *

int fib(int n) { last frame pointer * ]
int tmpl, tmp2, tmp3; tmp1 =1
tmpl = n < 2; tmp2 =2
" tmp3 =
if (Itmpl) goto L1; =i

return 1; @

L1: tmpl = n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);
L3: tmpl = tmp2 + tmp3;

return tmpl;



int fib(int n) {

[n=-3

int tmpl, tmp2, tmp3;

tmpl = n < 2;

if (Itmp1) goto L1;

return 1;
L1: tmpl =n - 1;
tmp2 = fib(tmpl
L2: tmpl = n - 2;
tmp3 = fib(tmpl

L3: tmpl = tmp2 + tmp3;

return tmpl;

return address  *

last frame pointer

tmp1 =1
tmp2 =2
tmp3 =
n=1

i
Ji

);‘/

return address

last frame nter *

E»




int fib(int n) {
int tmpl, tmp2, tmp3;
tmpl = n < 2;
if (Itmpl) goto L1;
return 1;
L1: tmpl = n - 1;
tmp2 = fib(tmpl);
L2: tmpl = n - 2;
tmp3 = fib(tmpl);
L3: tmpl = tmp2 + tmp3;
return tmpl;

»

ncs N
e

return address
last frame pointer *—|
tmp1 = 3+ result
tmp2 =2

tmp3 =1




Allocating Fixed-Size Arrays

Local arrays with fixed size are easy to stack.

void foo ()

{

}

int a;
int b[10];
int c;

return address

a

b[9]

b['O]

C

+— FP

+— FP — 48



Allocating Variable-Sized Arrays

Variable-sized local arrays aren’t as easy.

return address | «— FP

void foo(int n)

{ a
int a; -
int blnl; b[n 1]
int c; .

}

blo]
c —FP—7?




Allocating Variable-Sized Arrays

Variable-sized local arrays aren’t as easy.

return address | « FP
void foo(int n)
{ a
int a; -
int blnl; b[n 1]
int c; .
} S
b[o]
c —FP-7?

Doesn’t work: generated code expects a fixed offset for c.
Even worse for multi-dimensional arrays.



Allocating Variable-Sized Arrays

As always:

return address

add a level of indirection

a

void foo(int n)

b-ptr

{

int a;

C

int blnl;
int c;

}

b[n-1]

blo]

«— FP

Variables remain constant offset from frame pointer.

10



Implementing Nested Functions with Access Links

(access link) *
a{x=5
let by = S =42

let a x s =

let ¢ z =2 + s in
let d w= ¢ (w+l) in
d (y+1) in (* b *)

let e g =b (q+l) in

e (x+1) (* a *)

What does “a 5 42" give?

1



Implementing Nested Functions with Access Links

(access link) *
let a x s =
a:|x=5
let by = S =42
) . e
let ¢ z =2 + s in o (access link)
let d w=c¢ (w+l) in q=56
d (y+1) in (* b *)
let e g =b (q+l) in
e (x+1) (* a *)

What does “a 5 42" give?

i



Implementing Nested Functions with Access Links

(access link) *
let a x s =
alx=5
let by = S =142
. . ¢
let ¢ z =2z + s in - (access llnk)
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cess link
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Implementing Nested Functions with Access Links

(access link) *
let a x s =
a: X = 5
let b y = S =142
let ¢ z =z + s in o (access link)
let d w = ¢ (W+1) in q:6
d (y+1) in (* b *) b (access link)
y=17
let e g =b (q+l) in '
) g (access link) ¢
e (x+1) (* a *) . w=8

What does “a 5 42" give?

i



Implementing Nested Functions with Access Links

let a x s =
let by =
let ¢ z =2z + s in
let d w=c¢ (w+l) in
d (y+1) in (* b *)
let e g =b (q+l) in

e (x+1) (* a *)

(access link) °

tX=5

S =42

_| (access link) 4
-6

(access link)

5 y=7

_| (access link) <
“lw=8

What does “a 5 42" give?

| (access link) 4
1 .

i



In-Memory Layout Issues



Layout of Records and Unions

Modern processors have byte-addressable memory.

The IBM 360 (c. 1964)
helped to popularize
byte-addressable memory.

Many data types (integers, addresses, floating-point numbers)
are wider than a byte.

16-bit integer: n
32-bit integer: n

12



Layout of Records and Unions

Modern memory systems read
data in 32-, 64-, or 128-bit chunks:

[3]2ffo
|7 fofs ]|
Kl 1 EX

Reading an aligned 32-bit value is
fast: a single operation.

[3f2]fo]
|7 Jofs]e]
Kl K1 EX

13



Layout of Records and Unions

Modern memory systems read
data in 32-, 64-, or 128-bit chunks:

n How about reading an unaligned
n value?
| fo]9fs] ---ﬂ

Reading an aligned 32-bit value is
fast: a single operation.

[3f2]fo]
|7 Jofs]e]
Kl K1 EX

13



Padding

To avoid unaligned accesses, the C compiler pads the layout of
unions and records. Rules:

+ Each n-byte-aligned object must start on a multiple of n bytes
(no unaligned accesses).

+ Any object containing an n-byte-aligned object must be of size
mn for some integer m (aligned even when arrayed).

struct padded {

int x; /* 4 bytes */ struct padded {

char z; [* 1 byte */ char a; /* 1 byte */

short y; /* 2 bytes */ short b; /* 2 bytes */
1 byte */ short c; /* 2 bytes */

char w; /*

I5

14



Padding

To avoid unaligned accesses, the C compiler pads the layout of
unions and records. Rules:

+ Each n-byte-aligned object must start on a multiple of n bytes
(no unaligned accesses).

+ Any object containing an n-byte-aligned object must be of size
mn for some integer m (aligned even when arrayed).

struct padded {
int x; /* 4 bytes */ struct padded {
char z; /* 1 byte */ char a; /* 1 byte */
char w; /* 1 byte */ short b; /* 2 bytes */
2 bytes */ short c; /* 2 bytes */

short y; /*

e I5

(b lbf]al

15



Padding: (1) or (2)?

struct padded {
int a; /* 4 bytes */
char b; /* 1 byte */
char ¢; /* 1 byte */

ki
[ c b ENEn

(1) (2)

16



A C union shares one space among all fields

union twostructs

struct {
char c; /*
int i; /*
}oa;
struct {
union intchar { short s1; /*
int i; [* 4 bytes */ short s2; /*
char ¢; /* 1 byte */ } b;

g g

{

1
4

2
2

byte */
bytes */

bytes */
bytes */

Hanmn

17



Basic policy in C: an array is m
just one object after another

in memory.

What if we remove rule 2 of
padding? EEE blo]
Ty EEEa

18



Arrays and Aggregate types

it HEEEa
The largest primitive type

0 o rd 4 ? rd
dictates the alignment
struct {

s BEEER

short b; : : ° :
}dlsl; H H § 4

19



Arrays and Aggregate types

The largest primitive type “n“n dlo]

dictates the alignment ﬂﬂ- di1]
struct { -nn

o [b]bfala e

)t afal ] c W
L Jcfb]b]

20



Arrays of Arrays

char al4l; j m

alol
peadlld ali
al2]

21



The Heap




Heap-Allocated Storage

A heap is a region of memory where blocks can be
dynamically allocated and deallocated in any order.

22



Dynamic Storage Allocation in C

struct point {
int x, y;
}s

int play with points(int n)

int i;
struct point *points;

points = malloc(n * sizeof(struct point));
for (1 =0 ; i <mn; i+t ) {

points|[i].x = random ();
points|[i].y = random ();

}

* do something with the array

free (points);




Dynamic Storage Allocation

24



Dynamic Storage Allocation

I s
]

24



Dynamic Storage Allocation

I s
]
] L L

24



Dynamic Storage Allocation

I s
]
] L L
]

24



Dynamic Storage Allocation

]

]

24



Dynamic Storage Allocation

Rules:
Each allocated block contiguous (no holes)
Blocks stay fixed once allocated

malloc()

free()

25



Simple Dynamic Storage Allocation

Maintaining information about free memory
Simplest: Linked list

The algorithm for locating a suitable block
Simplest: First-fit

The algorithm for freeing an allocated block

Simplest: Coalesce adjacent free blocks

26



Simple Dynamic Storage Allocation

| s ]




Simple Dynamic Storage Allocation

| s ]
malloc(-)




Simple Dynamic Storage Allocation

| s ]
malloc(-)

| HON | B




Simple Dynamic Storage Allocation

| s ]
malloc(-)

| HON | B

free( ¢ )




Simple Dynamic Storage Allocation

| s N
malloc( [ )
s v s
free( ¢ )

I s [~ |

27



Fragmentation

malloc( [ ) seven times give

free() four times gives

_ N B
malloc( _ )?

Need more memory; can’t use fragmented memory.

28



Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

[
/

>|<>k

a

*b

T

>|<>I<b

B N

c Pointers

**c Handles

The original
Macintosh did this
to save memory.

29



Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

] )

The original
Macintosh did this

*a *b *c Pointers to save memory.

o1

**a **ph  **c¢ Handles

29



Automatic Garbage Collection



Automatic Garbage Collection

Entrust the runtime system with freeing heap objects

Now common: Java, C#, Javascript, Python, Ruby, OCaml and
most functional languages

Advantages? Disadvantages?

30



Reference Counting

What and when to free?

+ Maintain to each object
* Free when count reaches

let a = (42, 17) in
let b = [a;a] in n 42,17

let ¢ = (1,2)::b in
b

31
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Reference Counting

What and when to free?

+ Maintain to each object
* Free when count reaches

let a = (42, 17) in

let b = [a;a] in . 42, 17 \

let ¢ = (1,2)::b in N b ~,
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Reference Counting

What and when to free?

+ Maintain to each object
* Free when count reaches

let a = (42, 17) in
let b = [a;a] in 42, 17 \

let ¢ = (1,2)::b in b ™~
b !0\/ E_HlE-— (N
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Reference Counting

What and when to free?

+ Maintain to each object
* Free when count reaches

let a = (42, 17) in
let b = [asa] in 42, 17
let ¢ = (1,2)::b in b ~

b L T )
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Reference Counting

What and when to free?

+ Maintain to each object
* Free when count reaches

let a = (42, 17) in
let b = [asa] in 42, 17
let ¢ = (1,2)::b in b ~

b L T )
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Issues with Reference Counting

Circular structures defy reference counting?

[a__b]

32



Mark-and-Sweep

What and when to free?

algorithm invoked when memory full
marks all reachable memory
« All unmarked items freed

let a = (42, 17) in
let b = [a;a] in
let ¢ = (1,2)::b in
b

33



Mark-and-Sweep

What and when to free?

algorithm invoked when memory full
marks all reachable memory
« All unmarked items freed

let a = (42, 17) in
let b = [a;a] in . 42, 17
let ¢ = (1,2)::b in

b
b L [ o]l [ o | \437
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Mark-and-Sweep

What and when to free?

algorithm invoked when memory full
marks all reachable memory
« All unmarked items freed

let a = (42, 17) in

let b = [a;a] in n 42,17
let ¢ = (1,2)::b in b ~
o/

b | | [+
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Mark-and-Sweep

What and when to free?

algorithm invoked when memory full
marks all reachable memory
« All unmarked items freed

let a = (427 17) in
let b = [a;a] in . 42, 17
let ¢ = (1,2)::b in b ~

b L [ ] \437
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Mark-and-Sweep

Mark-and-sweep is faster overall; may induce big pauses

Mark-and-compact variant also moves or copies reachable
objects to eliminate fragmentation

Incremental garbage collectors try to avoid doing everything
at once

Most objects die young; generational garbage collectors
segregate heap objects by age

Parallel garbage collection

Real-time garbage collection

34



Objects and Inheritance



Single Inheritance

Simple: Add new fields to end of the object

Fields in base class always at same offset in derived class
(compiler never reorders)

Consequence: Derived classes can never remove fields

C++ Equivalent C
class Shape { struct Shape {
double x, y; double x, y;
Iig s
class Box : Shape { struct Box {
double h, w; double x, y;
}; double h, w;
s
class Circle : Shape { struct Circle {
double r; double x, y;
}: double r;
s
S

35



Virtual Functions

class Shape {
virtual void draw();

s

/] Invoked by object’s run-time class
/] not its compile-time type.

class Line : public Shape {

void draw();

}

class Arc : public Shape {

void draw();

g

Shape *s[10];
s[o] = new Line;
s[1] = new Arc;

slol->draw(); // Invoke Line::draw()
s[1]->draw (); /] Invoke Arc::draw()

36



Virtual Functions

Trick: add to each object a pointer to the for its
type, filled with pointers to the virtual functions.
A's Vibl B’s Vibl
struet A t A::Foo B::Foo
virtual voi 00(); . .
vir:ua: voig ;ar(); A"Bar A"Bar
i B::Baz
stlfuct B : A { al
L?:nll/;l void Foo(); thr b1
virtual void Baz();
y X vptr
A ai1; X
A az; a2 y
B b1; thr
X

37
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