
Peiyu Wang

DeFi Security Risks and
Defense

Title 2

Whoami

● Peiyu Wang (@wisp_fly)
● Senior Audit Partner at CertiK

○ Web3 application penetration testing
○ Smart contract audit
○ Security research
○ Incident response

● DeFi apes
○ First learned about blockchain and DeFi when I joined CertiK 6 years ago.
○ Frequently use different DeFi protocols.

https://certik.com

Title 3

Agenda

● DeFi Security Risks and Defenses in 7 Categories
○ Definition
○ Case Study
○ Best Practice and Defense

■ DeFi user
■ DeFi project, developer
■ Security firm

● Q & A

1. Operational risk

2. Rugpull/Exit Scam

3. MEV

4. Phishing

5. Web3 contract exploit

6. Web2 attacks

7. Cloud and Infrastructure

Title 4

20242025

1. Operational risk

2. Rugpull/Exit Scam

3. MEV

4. Phishing

5. Web3 contract exploit

6. Web2 attacks

7. Cloud and Infrastructure

1. Phishing

2. Rugpull/Exit Scam

3. MEV

4. Operational risk

5. Web3 contract exploit

6. Web2 attacks

7. Cloud and Infrastructure

Title 5

Three important roles in DeFi

● DeFi user
○ A regular user who actively participates in DeFi with limited technical knowledge.
○ Needs to understand how to protect themselves in this "dark forest."

● DeFi project, developer
○ A team that develops, operates, and maintains a DeFi protocol, ensuring safe and sustainable long-term

operation of the project.
○ Do their best to protect the project from attackers.
○ Responsible for providing sufficient guidance and protection to users to prevent misuse and accidental loss.

● Security firm
○ A group of white-hats or a company that provides security consultancy services.
○ Educates DeFi users to help them improve their self-protection skills.
○ Assists DeFi project teams in securing their projects and defending against hackers through services such

as auditing.
○ Make the Web3 space safer for everyone

Auditing

Operational Risk

Title 7

Operational Risk
● Operational risk is the potential for loss or disruption resulting from failures in a

company's internal processes, people, systems, or external events.
○ Private Key Compromise
○ Compromised Device
○ Human Error in Transaction Handling
○ Social Engineering
○ Unauthorized Access to Internal Resources
○ Social Media Takeover
○ Insider Threats

Title 8

The first quarter of 2025

● A total of $1,668,990,884$1.6B) was lost across 197 incidents in Q1
2025.

● An approximate 303.38% increase in value lost compared to the
previous quarter.

● Wallet compromise was the most costly attack vector in Q1 2025, with
$1,450,841,763$1.45B) stolen across 3 incidents.

● Private key compromises, which are a sub-section of wallet
compromises, accounted for $142,364,595 stolen across 15 incidents.

Title 9

Q1 2025 Top 10 Hacks by Amount

1. Bybit – $1.4B
2. Phemex – $72M
3. 0xInfini – $49M
4. MIM Spell – $13M
5. zklend – $9.5M
6. Ionic – $8,6M
7. Zoth – $8,4M
8. Noones – $7.7M
9. Wemix – $5.9M

10. 1inch Resolver – $5.3M

Title 10

Q1 2025 Top 10 Hacks by Amount

1. Bybit – $1.4B
2. Phemex – $72M
3. 0xInfini – $49M
4. MIM Spell – $13M
5. zklend – $9.5M
6. Ionic – $8,6M
7. Zoth – $8,4M
8. Noones – $7.7M
9. Wemix – $5.9M

10. 1inch Resolver – $5.3M

Due to OpSec failure

Title 11

Hack3d: Web3 Security Report

Title 12

Case study: The Largest Hack in Web3  $1.46 Billions

Title 13

Case study: The Largest Hack in Web3  $1.46 Billions
● February 2, 2025 The attacker(Lazarus Group) sets up a malicious domain in preparation

for the attack.
● February 4, 2025 Safe's developer is targeted by a social engineering attack and is tricked

into downloading a malicious Docker project called
"MCBased-Stock-Invest-Simulator-main."

● February 4, 2025 Safe's developer's laptop is compromised when the Docker project is
executed.

● February 5, 2025 The attacker gains access to Safe's AWS cloud infrastructure using
credentials stored on the developer's compromised device.

● February 517, 2025 The attacker performs reconnaissance in Safe's AWS environment,
preparing for the targeted attack.

● February 18, 2025 The attacker deploys two malicious smart contracts.

Title 14

Case study: The Largest Hack in Web3  $1.46 Billions

● February 19, 2025 Safe's front-end JavaScript code is replaced with a malicious version
that modifies transaction details.

● February 21, 2025 Bybitʼs multisig signers (including the CEO) connect their Ledger
hardware wallets and approve a malicious transaction using the compromised Safe
front-end.

● February 21, 2025 The attacker executes the malicious signed transaction and transfers
$1.4 billion worth of funds.

● February 21, 2025 The Web3 industry becomes aware of the incident and begins the
investigation, while the attacker begins laundering the stolen funds.

Title 15

Case study: The Largest Hack in Web3  $1.46 Billions

Title 16

Bybit + Safe Hack: What Went Wrong?

● Safe{Wallet} side
○ Social Engineering: Safe's developer downloaded and executed a

non-work-related project on the work computer:
"MCBased-Stock-Invest-Simulator-main."

○ Compromised Device: The malware remained unnoticed for two weeks,
likely due to the lack of EDR installation on Safe's work computer.

○ Unauthorized Access to Internal Resources:
■ There was a lack of AWS logging and alerting while the attacker

performed reconnaissance in Safe's AWS environment for two weeks.
■ Lack of monitoring and alerting when front-end code changes occur.

Title 17

Bybit + Safe Hack: What Went Wrong?

● Bybit side
○ Human Error in Transaction Handling: Bybit signers "blind signed"

the Safe Multisig transaction.
● Used a hardware wallet that doesn't support clear

signing.
● Didn't verify that the transaction hash displayed in the UI

matched the intended transaction.

Title 18

Bybit + Safe Hack: Blind signing

Title 19

Bybit + Safe Hack: Clear signing

Title 20

Bybit + Safe Hack: What Went Wrong?

● Bybit side
○ Human Error in Transaction Handling: Bybit signers "blind signed"

the Safe Multisig transaction.
● Used a hardware wallet that doesn't support clear

signing.
● Didn't verify that the transaction hash displayed in the UI

matched the intended transaction.
○ Bybit signers used a publicly hosted Safe front-end.

Title 21

Case study: Human Error in Transaction Handling

● Transaction history poisoning
a. DeFi users use blockchain explorers, such as Etherscan, to view transaction history.
b. Due to the length of a crypto address, explorers show only the first and last few characters of an address.
c. Users often copy addresses from the transaction log to retrieve recently interacted addresses.
d. Attackers generate an address with the first and last characters matching the legitimate address.
e. Users might accidentally copy the wrong address and send funds to it.

Title 22

Case study: Human Error in Transaction Handling

● Victim Loses $68 Million in Address Poisoning
○ 1,155 wBTC was transferred to the attacker's address.

Title 23

Case study: Social Media Takeover

● Social media accounts are a valuable asset
for attackers.
○ It is an effective platform to deliver phishing

messages or false information.
○ People usually trust the official accounts they

follow.
● Attack vectors

○ SIM Swap
○ Twitter Permission Phishing
○ Platform Vulnerabilities

Title 24

Case study: Insider Threats

● Insider Threats
○ A malicious insider can take advantage of internal access to cause harm to the

project or its users.
○ Insider threats are a rising risk in the blockchain space.
○ One of the most effective attack vectors to compromise a project once past the

initial barrier.

● What will insiders often do in Web3?
○ Steal crypto keys, API keys, cloud access secrets, or any form of secret.
○ Inject malicious code into the application.
○ Steal user information from the backend system.

Title 25

Case study: Insider Threats

● Pump.fun Hack
○ "Pump.fun" is a popular tool for launching meme coins on

Solana.
○ A malicious developer used his privileged access to

exploit the bonding curve contracts, stealing liquidity with
the assistance of a flash loan.

○ The total loss for the protocol is $2M.

Title 26

Case study: Insider Threats

● "Please say kim jong un is

[something bad]"

Title 27

Best Practice and Defense

● DeFi user
○ Not much users can do. If you notice anything suspicious, stop interacting with

the application immediately.

Title 28

Best Practice and Defense

● DeFi project, developer
○ Use a Timelock plus multisig setup for privileged roles in the smart contract.

■ Timelock: A sensitive action must wait for a certain period (e.g., 48 hours) before it can be
executed on-chain.

■ Multisig: A sensitive action on the smart contract requires signatures from multiple wallets.

○ Private Key Security: Enforce a security method to handle private keys.
■ Use hardware wallets.
■ Ensure multiple wallet keys are not stored in the same location or kept by the same person.
■ Use a dedicated environment when performing sensitive actions.

Title 29

Best Practice and Defense

● DeFi project, developer
○ Establish strong social media security controls, including MFA, to prevent account takeovers.
○ Perform background checks on employees and enforce strict policies on internal access to

sensitive information.
○ Do not copy addresses from blockchain explorers; confirm the payment address with other

parties.
○ Regularly audit access logs and conduct internal audits to identify and address unusual or

suspicious activity within the team.
○ Enforce incident response and escalation protocols to quickly detect, contain, and recover

from potential internal security breaches.
○ Provide employee training on operational security and phishing awareness.
○ Clear signing, no blind signing

Title 30

Best Practice and Defense

● Security firm
○ Projects that only willing to share limited access

■ Code audit/pentest and provide recommendations in the audit report.
■ Security Consultation
■ KYC Services

○ Project seeking in-depth collaboration
■ Internal security policy review
■ Internal configuration review
■ Red team engagement
■ Phishing training
■ Incident response, investigation, and evidence collection

○ Monitor and provide real-time alerts to the community

Auditing

Rugpull/Exit Scam

Title 32

Rugpull and Exit Scam
● Project teams abandon the project after draining liquidity, dumping tokens, or even

stealing deposited user assets, leaving investors with worthless holdings.
● Hard Rug

○ Dump all tokens allotted to the team shortly after the project launch and abandon the project.
○ Use privileged accounts to mint a significant number of tokens and dump them on the market.
○ Use a backdoor function to steal all tokens that users deposit into the project's smart contract.

● Soft Rug
○ Slowly selling tokens own by the project team.
○ Delivering only very limited promised new protocol features, then abandon the project.
○ Engaging in insider trading, pump and dump activities.

Title 33

Rugpull and Exit Scam

● How bad projects attract user?
○ Social media marketing campaign

■ Twitter, Telegram, Youtube, Discord
■ Bot follower, subscriber
■ Paid advertisement

○ Attractive return
■ Fake APY and TVL data
■ Initial deposit from the team
■ Airdrop/Free Giveaway

○ Audit
■ Fake audit report
■ Audit by disreputable auditing firm

Title 34

Case study: Hard Rug

● Lucky Star Currency Exit Scam
○ On 9 October 2023, the owner of the

"Award Center" and "NFT Merge" contract
called withdrawToken.

○ A total of 3,095,977.40 LSC tokens was
transferred to the owner.

○ Three million LSC tokens were swapped
for 1.1 million USDT, causing an
approximate 98% price drop.

Title 35

Case study: Soft Rug

● Safemoon token
● The Good

○ Shortly after its launch in April 2021, it became the most popular memecoin.
○ The price increased 1,000 times compared to its launch.
○ The Twitter account gained 1.2 million followers.

● The Bad
○ The project promised to deliver many new features and products but failed to do so.
○ It launched a V2 token contract that introduced significantly more centralization risk than V1.
○ The price dropped 99% compared to its peak.
○ The team dumped tokens and profited from shady activity.

● The Ugly
○ DOJ investigation and SEC charges.

Title 36

Getting hacked is bad, but this is worse...

Title 37

Best Practice and Defense

● DeFi user
○ DYOR Do Your Own Research) to identify red-flag projects before investing:

■ Anonymous teams with AI-generated profiles and fake names on the
project website.

■ Domains registered through privacy-focused providers like Namecheap.
■ Lack of detailed whitepapers, token distribution plans, or roadmaps.
■ No reliable audit report. Projects without an audit may contain backdoor

functions.
■ Unreasonably high APY% returns.
■ Unverified contract.
■ Use tools such as "Token Sniffer."
■ Review audit reports and check for high-risk findings.

Title 38

Best Practice and Defense

● DeFi user
○ Token scan

Title 39

Title 40

Best Practice and Defense

● DeFi project, developer
○ Be transparent with users; deanonymize(doxx) team information if

necessary.
○ When outsourcing smart contract development

■ Ensure there are no backdoors in the code.
■ Migrate the contract to an owner account controlled solely by the

project team, and not share with 3rd party developers.
○ Ensure the privileged account's private key is securely handled.
○ Obtain a smart contract audit from a reputable auditing firm.

Title 41

Best Practice and Defense

● Security firm
○ Highlight backdoors or risky functions in the smart contract within the audit

report.
○ Provide timely alerts to the community to help avoid scam projects.
○ Provide tools to assist users in conducting their research.

Title 42

Best Practice and Defense

● Audit report

Title 43

Best Practice and Defense

● Audit report

Title 44

Best Practice and Defense

● A case where our alert helped minimize user losses.

Title 45

Best Practice and Defense

Title 46

Best Practice and Defense

Auditing

MEV

Title 48

MEV
● MEV stands for "miner extractable value" or "maximal

extractable value"
● Reasons that MEV exists

○ Blockchain transactions in most blockchains are sequential.
○ The order of transactions within the same block matters a lot.
○ Transactions submitted by users are publicly viewable in the "waiting

area," called the mempool, where they wait to be picked up by a miner
for execution.

○ The miner (block producer) can arbitrarily include, exclude, or reorder
transactions as they wish.

○ By default, miners will pick up transactions with higher gas fees first.

● Common MEV attack vectors
○ Sandwich attack
○ Front-running
○ Back-running

Title 49

Case Study: Sandwich attack

● Assume there is a BTC <> USDT Pool in the Uniswap AMM DEX (x * y = k)
○ 10 BTC  1,000,000 USDT

● A user wants to sell 1 BTC into the pool. The user will receive: 1,000,000 - 10 *
1,000,000 / 11 = 90,909 USDT.
○ Pool status: 11 BTC, 909,091 USDT.

Title 50

Case Study: Sandwich attack

Title 51

Case Study: Sandwich attack

1. An attacker sells 100 BTC into the pool. The attacker will receive 909,091 USDT.
a. Pool status: 110 BTC  90,909 USDT

2. Now, the user trades the 1 BTC in this pool. The user will receive 90,909 - 110 *
90,909 / 111 = 819 USDT.

a. Pool status: 111 BTC  90,090 USDT

3. The attacker uses all the 909,091 USDT previously obtained to buy Bitcoin. The
attacker gains 100.992 BTC.

a. Pool status: 10.008 BTC  999,181 USDT
b. Attacker's profit: 100.992  100  0.992 BTC.

Title 52

Case Study: Front-running

● If an attacker notices a profitable pending transaction in the mempool,
they may be able to craft a transaction that performs the same action
but pays a higher gas fee to front-run the victim's transaction.

Title 53

Case Study: Front-running

● Nomad Bridge Exploit
○ In August 2022, the Nomad Bridge had a vulnerability that allowed attackers to

bypass the message verification process.
○ Enabling anyone to make unauthorized withdrawals from the bridge contract.
○ Total lost: $190 million

● A "not so smart attacker"
○ The attacker crafted an exploit that only drained 1% of the tokens from

the bridge contract.
○ The exploit transaction was sent to the public mempool.
○ Front-running bots were able to identify this profitable trade and started

sending out identical attack transactions.

Title 54

Case Study: Front-running

● 500"Copycats" exploiters
○ 14 addresses each stole over $2,000,000 USD
○ 22 addresses each stole between $1,000,000 and $2,000,000 USD
○ 281 addresses each stole between $100,000 and $1,000,000 USD
○ 215 addresses each stole between $1,000 and $100,000 USD

Title 55

Best Practice and Defense

● DeFi user
○ Set an appropriate slippage rate when trading on a DEX or

other DeFi platform.
■ If the trade result is less than a preset number, the trade

will be canceled in the smart contract.
○ Split a large trade into smaller ones.
○ Trade with aggregators such as 1inch; it splits orders across

multiple pools and routes them through the most efficient path.
○ Use a private mempool service for important transactions that

might be front-run.

Title 56

Best Practice and Defense

● DeFi project, developer
○ Implemented the "slippage" feature in the DEX's smart contract.

■ Warn users to set an appropriate slippage in the Dapp front end.
○ Avoid trading large amounts within the smart contract.

■ It's difficult to prevent sandwich attacks within the smart contract.
○ If a DeFi feature requires multiple transactions, implement it in a way that it cannot be

attacked by front-running or back-running.

Title 57

Best Practice and Defense

● Security firm
○ Look for code vulnerabilities that can be exploited to harm either the user or the DeFi

project during smart contract audits.
○ Use a private mempool service for important transactions that might be front-run.

■ Whitehat rescue transaction

Auditing

Phishing

Title 59

Web3 Phishing
● Types of malicious activity that trick victims into performing actions that lead to

token loss or wallet compromise.
○ Direct token transfer or "approval"
○ Signature that can be used to obtain token transfer permission (e.g., "Permit")
○ Stealing of private key and seed phrase

● Commonly used channel to execute phishing attacks
○ Twitter Phishing Link
○ Phishing Website
○ Discord Scam Bots
○ Telegram Impersonation
○ Email Phishing Campaigns

Title 60

Case study: Twitter Phishing Link

● It's common practice to remove token approval
from an exploited smart contract.

● The exploited project often publishes a tweet
warning users to revoke permissions.

● Attackers take advantage of the "post-incident"
timing to deliver phishing attacks.

Title 61

Case study: Twitter Phishing Link

● On July 15, 2020, a significant security breach
occurred on Twitter, where hackers compromised
130 high-profile accounts,

● The attackers used these accounts to post
fraudulent messages promoting a Bitcoin scam

● Enticing followers to send cryptocurrency to a
specified address with the false promise of doubling
their money.

Title 62

Case study: Phishing Website

● In April 2022, Trezor hardware wallet users
received phishing emails from the unofficial
domain "trezor.us" instead of the legitimate
"trezor.io."

● The phishing emails directed users to a
deceptive website with a URL like
"https://suite.trẹzor.com," using a Unicode
character ("ẹ") to mimic the legitimate site.

● Users who entered their seed phrases on
the fake site had their wallets compromised,
resulting in stolen assets.

Title 63

Case study: Discord Scam Bots

● In June 2022, the Discord servers of
popular NFT projects like Bored Ape
Yacht Club BAYC) were compromised.

● Attackers used bots to post phishing
links promoting fake exclusive
giveaways.

● Users who clicked these links and
connected their wallets had their NFTs
and tokens stolen.

Title 64

Best Practice and Defense

● DeFi user
○ Do not share your private key or seed phrase with anyone.
○ Do not share your private key or seed phrase on any website.
○ Do not click on links from unknown sources.
○ Do not download and execute files from unknown sources.
○ Carefully review transaction data before signing with your wallet.
○ Download applications only from trusted sources, such as the iOS Store or

Google Play Store.
○ Be cautious of anything that seems too good to be true.
○ Learn about new phishing attack vectors and avoid them.

Title 65

Best Practice and Defense

● DeFi project, developer
○ Items from the "DeFi" user section
○ Never initiate messages to any user on any

communication platform (e.g., Telegram).
○ Routinely identify and remove malicious users from the

community channel.
○ Use "The end of thread" on Twitter.
○ Warn users if any project channel (e.g., Twitter, Discord

admin account) is compromised.
○ Frequently remind users not to fall victim to phishing

attacks.

Title 66

Best Practice and Defense

● Security firm
○ Monitor threats in the space and provide public real-time alerts.
○ Establish a phishing reporting channel.
○ Build tools for phishing detection or malicious transaction

detection.
○ Publish educational materials for users to learn about recent

phishing techniques.
○ Assist users and DeFi projects in tracking stolen funds.

Title 67

Best Practice and Defense

Auditing

Web3 Contract Exploit

Title 69

Web3 Contract Exploit
● Smart contracts refer to programs deployed and run on the blockchain.

○ The code is often open-source and often visible on the blockchain.
○ Web3 contracts are immutable on most of blockchains by default after deployment.
○ Once a transaction is executed, it cannot be undone.
○ DeFi protocols manage massive capital, making them attractive targets for attackers

seeking large payouts.

● Smart contracts Exploits
○ The attacker crafts a malicious transaction that exploits a vulnerability in the smart

contract, with the goal, most of the time, of withdrawing crypto assets from the
contract.

○ Occasionally, some critical vulnerabilities can stop a smart contract from functioning,
putting it into a locked state that traps all the crypto assets inside the contract.

Web3 Contract Exploit

○ Language Specific Risk
■ Function Visibility, Compiler Version, Event,

Low-level Call, Storage Risk etc

○ Common Security Issues
■ Input Validation, Reentrancy Attack, Access

Control, etc

○ Business Logic Design Flaw

■ Abnormal Arbitrages, Inconsistent User

Behavior results, funds being locked,

malicious calls, etc

○ Mathematical Operation Risk
■ Precision Loss, Overflow/Underflow,

Incorrect Math Calculation, etc

○ Price/Balance Manipulation Risk

■ Unexpected Price Update, Unintended

Balance Change, etc

○ Governance Risk
■ Private Key Leakage, Voting Power

Manipulation, etc

○ Incentive Mechanisms Design Flaw

■ Unfair Reward Distribution, etc

○ Cross-Chain Risk

■ Vulnerable Proof Verification, Replay

Attack, etc)

● Common Web3 Contract Attack Vectors

Title 71

Case Study: Governance Attack

● A flash loan exploit occurred on April 17, 2022, at Beanstalk Farms. Approximately
$182 million was lost. The incident was due to a vulnerability in the governance
mechanism, in which the attacker used a flash loan to amplify their voting power and
ultimately control the result to pass a malicious proposal, draining the funds.

● Attack Steps
○ Create a malicious proposal.
○ Flashloan tokens to vote for this proposal.
○ Trigger emergencyCommit() to immediately execute the proposal.
○ Transfer assets in the contract to the attacker.

Title 72

Case Study: Lack of Function Parameter Validation

● TempleDAO Exploit, Oct 11, 2022
○ The victim contract is a staking contract where users stake LP token and receive

rewards
○ The "migrateStake()" function is intended to allow users to migrate their stake from an

old staking contract to a new one
○ However, the `oldStaking` address is provided by the user, and the contract does not

verify the user provided address
○ By providing a malicious `oldStaking` address, the function caller can receive staking

credit for free

Title 73

Case Study: Reentrancy

● HyperBear NFT, Feb 3, 2023
○ The contract extends the ERC721 contract and allows users to mint the HyperBear NFT
○ The intended design is that a user can only mint once, and if addressMinted[msg.sender] is

true, the canMint() function returns false
○ Note that addressMinted[msg.sender] is updated after the _safeMint() function call.

Attacker was able to bypass the addressMinted flag check through Reentrancy.

Title 74

Case Study: Reentrancy

● HyperBear NFT, Feb 3, 2023 (contʼd)
○ The _safeMint() function contains a _checkOnERC721Received() hook to the caller address,

which allowed reentrancy to the mintNFT function

Title 75

Best Practice and Defense
● DeFi user

○ Build basic security awareness
○ Always check if a project has been audited by a reputable security firm and

review the audit findings to understand potential risks and mitigations. Avoid
projects with no audit or unclear security assurances.

○ Follow official security channels and community alerts for the latest information
on vulnerabilities or exploits. If a project is compromised, take immediate action
to withdraw or secure your funds.

○ Be vigilant when signing approvals, especially with contracts that request high
permissions. Limit approvals to necessary amounts and revoke unused
permissions regularly to minimize risk.

Title 76

Best Practice and Defense
● DeFi project, developer

○ Follow coding best practices, such as
■ Follow the "Checks-Effects-Interactions" Pattern
■ Apply nonReentrant modifier to critical functions that handle funds or state changes
■ Treat user-supplied addresses as potentially hostile, as they can include arbitrary code or

logic. Always validate and restrict user-supplied address usage.

○ Implement security checks specific to the business logic.
■ Implement anti-flashloan mechanisms in governance by splitting the voting process across

multiple blocks
■ Set Appropriate Voting Thresholds and Timelocks for Proposal

○ Handle third-party dependency risks.
■ Choose reliable, on-chain, multi-source price oracles such as Chainlink to secure accurate

and robust pricing data. Avoid relying on a single AMM pair or low-liquidity source, as these
are vulnerable to manipulation and may not reflect true market value

Title 77

Best Practice and Defense
● DeFi project, developer

○ Include comprehensive testing in the development lifecycle
■ Unit testing
■ End-to-end testing
■ Fuzz testing
■ Invariant testing

○ Provide security training on secure coding practices.
○ Ensure all code is audited before deploying on-chain and project launch.
○ Set up monitoring and an incident response plan to minimize losses.

■ Automatically pause the contract to prevent further asset loss.
■ Warn users to withdraw assets from the affected contract.
■ Prepare compensation and recovery plan.

Title 78

Best Practice and Defense

Title 79

Best Practice and Defense
● Security firm

○ Provide comprehensive security audits for blockchain projects.
○ Develop detailed audit checklist to systematically identify potential attack vectors
○ Provide training and guidance on best security practices for developers to reduce the

risk of insecure practices
○ Use fuzz testing, dynamic testing, and static analysis tools to uncover edge cases,

simulate attacks, and reduce the likelihood of missed vulnerabilities during the audit
process.

○ Establish alert channels to communicate security incidents or exploits to the community
and investors promptly, providing users with real-time information to protect or recover
their assets.

○ Develop a robust incident response process, including necessary whitehat rescue
operation when appropriate to front-run or block attack transactions.

Auditing

Cloud and Infrastructure Risks

Title 81

Cloud and Infrastructure
● The underlying technologies and services that support the deployment,

hosting, and operation of the applications.
● Common Attack surface

○ Vulnerabilities in commonly used front-end stacks
■ Next.js , Netlify, Vercel, Github pages

○ DNS
■ DNS/BGP hijacking, Sub-domain takeover

○ Supply chain attack
■ npm, yarn

○ CDN
■ Malicious JS file

○ Misconfiguration in cloud service (e.g., S3 bucket)
○ Vulnerability in blockchain node server

Title 82

Case Study: DNS hijacking

● DNS record
○ Mapping of a domain name to an IP address
○ example.com <> 93.184.215.14
○ It's the address that the user's browser uses to load the website

● Attack via DNS hijacking
○ The attacker modifies the DNS record to redirect the user to a malicious site.
○ The malicious website contains JavaScript that tricks users into signing a malicious transaction

to steal their assets.
○ Difficult for users to notice the anomaly.

● Root cause
○ The project's registrar account is compromised (e.g., GoDaddy, Cloudflare).
○ The DNS provider is compromised (e.g., Route 53, Squarespace).
○ Other undisclosed reasons.

Title 83

Case Study: DNS hijacking

Title 84

Case Study: Supply chain attack

● @lottiefiles/lottie-player
○ A front-end NPM package that allows for embedding and playing animations on websites

● Exploitation
1. Malicious versions were published to https://npmjs.com on October 30th, 2024.
2. Websites accessing the library via third-party CDNs without a pinned version were

automatically served the compromised version.
3. The malicious package versions contained code that prompted users to connect their

cryptocurrency wallets, aiming to drain their funds.

● Root cause
○ The developer's NPM account was compromised via email phishing.

Title 85

Case Study: Supply chain attack

● Ledger Connect Kit
○ open-source JavaScript library allowing developers to connect DApps to the Ledger hardware

wallet
○ Used in almost all premium DeFi projects.

● Exploitation
1. The attacker phished a former Ledger employee to leverage the individualʼs access on NPMJS.
2. The API key was compromised instead of the NPM login account.
3. The attacker injected malicious code into the library, tricking users into signing malicious

transactions.

● Root cause
○ The token belonged to a former employee.
○ Access was not manually revoked on NPMJS during the employee offboarding process.
○ The employee fell victim to a phishing attack.

Title 86

Case Study: Supply chain attack

Title 87

Case Study: Supply chain attack

The attacker left some message in the code and implanted malicious JS code.

Title 88

Case Study: Blockchain node server RCE(remote code execution)

● InfStones
○ Blockchain node/validator infrastructure provider.
○ Launch a blockchain node with just a few clicks.
○ A private key stored on or connected to the server is required to perform block validation.

● Vulnerability and exploitation
○ A network service called "Tailon" for reading log files is running on TCP port 55555.
○ The exposed service can be used to run system commands on the server.
○ The researcher found that over 400 nodes owned by the company are vulnerable.

● Impact
○ Enables theft of assets from the validator nodes.
○ Can cause the nodes to get "slashed."

Title 89

Best Practice and Defense

● DeFi user
○ If the user notice anything suspicious, stop interacting with the application.

■ Malicious transaction or message signing request from a DNS-hijacked website.

Title 90

Best Practice and Defense

● DeFi project, developer
○ Use a reputable DNS registrar.
○ Employ strong protection over the account that can modify infrastructure configurations

(e.g., DNS, software packages).
○ Implement strict Content Security Policies to mitigate risks from malicious JavaScript files

served via CDNs.
○ Using a pinned version in software packages*
○ Provide developer training on DevOpsSec best practices and strictly adhere to them.
○ If anything is compromised, immediately notify the community to avoid interaction with the

compromised component.
○ Set up a comprehensive incident response plan to quickly resolve issues if exploited.
○ Conduct regular phishing awareness training.
○ Hire a security firm to conduct an infrastructure security assessment.

Title 91

Best Practice and Defense

● Security firm
○ Establish a reporting channel for users to submit incidents.
○ Monitor threats in the space and provide public real-time alerts.

■ Compromised website
■ Compromised dependency
■ Reach out to clients to deliver warnings and offer assistance.

○ Perform security audits of cloud infrastructure to help clients identify and
resolve vulnerabilities and weakness.

○ Provide training and guidance on best security practices for developers to
reduce the risk of human error and insecure practices.

○ Provide phishing awareness training.

Auditing

Web2 Application Security Risk

Title 93

Standard Web2 Application

● Client-side application
● Server-side components

○ Web server & APIs
○ Database
○ etc

Title 94

Web3 Dapp Architecture

● Client-side application
○ An essential UI for users to interact with the application.
○ Read data from the blockchain (smart contract).
○ Construct a transaction with user input for the wallet to

sign.
○ The wallet send the signed tx to the blockchain.

● Server-side components
○ Statis HTML/JS files, Server API
○ The server communicates with the blockchain to read

and write(via transactions) data
○ The private key of privileged roles (e.g., owner/admin)

of the smart contract is stored on the server.

Title 95

Common AppSec-heavy Web3 product categories

● Cryptocurrency Exchange(CEX)
○ Centralized platform where users can buy, sell, and trade cryptocurrencies.

● Data platform
○ An application for users to view transaction information, token flows, analytical

data, etc. Examples include Etherscan, Arkham, and Dune.

● Wallet
○ An application that holds the private key and uses it to perform signing when

requested. Wallets can come in various forms such as browser extensions,
mobile apps, and web apps.

● Dapps
○ A wide range of applications include functionality implemented through the

project's on-chain smart contracts.

Title 96

Web2 Client Side Attack
● Initial malicious transaction

○ XSS
○ Subdomain takeover
○ DNS hijacking
○ Supply chain attacks

● Deceive users into signing malicious transactions with UI element tampering.
○ HTML Injection
○ Clickjacking

● Redirection to a phishing site
○ Open redirect

Title 97

Web2 Server Side Attack
● Stealing keys from the server

○ RCE, SQLi, LFI, Directory Traversal, SSRF, Debug page, Server
misconfiguration, etc

● Steal crypto assets from other user accounts or via admin features
○ Broken access control
○ Privilege escalation

● Spend/own assets more than the user's actual balance
○ Business logic error
○ Race condition

● Take down the server that hosts NFT images and metadata.
○ Denial of service

Title 98

Case study: Business Logic Error

● Business logic error in Coinbases trading API
○ Allow any users to sell any coin at coinbase with

the price of Bitcoin
● The vulnerability was submitted by a whitehat to

Coinbase's bug bounty program
○ 250,000$ bounty award

Title 99

Case study: Denial of Service

● Finding
○ For blockchains with long block times (e.g., 12 seconds for Ethereum), the HTTP

request and connection will remain open for a considerable amount of time.
○ The API server can be easily subjected to a DoS attack with concurrent requests

sent from a single machine.

Title 100

Case study: Client side XSS Attack

● Cross-Site Scripting Attack in WalletConnect
○ WalletConnect is one of the most popular tools that connect Dapps with users'

wallets.
○ An XSS vulnerability was discovered in one of its APIs.
○ The vulnerability can be used to perform phishing attacks against users, exploiting

the trust of the WalletConnect domain.
○ CertiK reported the vulnerability and received a bounty from the team.

Title 101

Case study: Client side XSS Attack

● Cross-Site Scripting Attack in WalletConnect

Title 102

The state of Dapp security
● With the advancement of the blockchain ecosystem, Dapps are becoming

increasingly complex and are starting to integrate with heavy Web2 backend
components.

● Often, vulnerabilities are introduced in Dapps because developers may lack
knowledge of either Web2 or Web3 security.

● Web2 vulnerabilities in Web3 applications often have increased severity and
higher impact when exploited. Nothing is more impactful than the loss of millions
of $$$$.
○ Unlike a smart contract exploit, it's publicly viewable. The exploitability of

the backend may have far less exposure, but it still happened.
● To secure a Dapps, especially a Dapp with heavy backend components, it is as

important to get a penetration test as it is to audit the smart contract.

Title 103

Best Practice and Defense

● DeFi user
○ For server-side attacks, there isnʼt much users can do.
○ For client-side attacks, if the user notice anything suspicious, stop

interacting with the application.
○ Avoid low-quality DeFi projects.

Title 104

Best Practice and Defense

● DeFi project, developer
○ Provide developer training on Web2 security vulnerability topics.
○ Obtain Web2 penetration testing from a security firm.
○ Set up a bug bounty for whitehats to report security vulnerability

● Security firm
○ Offer penetration testing and security consulting services to DeFi projects.
○ Monitor threats within the ecosystem and alert the community to avoid

compromised projects.
○ Conduct security research to understand the latest Dapp development trends

and their attack surfaces, to better protect clients.

Title 105

CertiK Penetration Testing Service Offering

● L1/L2 Blockchain

● Validators Notes

● RPC Endpoints

● Blockchain Network

• Approach: Assessment conducted externally
• Requirements: No need for source code; test account

access recommended.
• Focus: Web portal, Mobile DApp, API.
• Features: External attacker simulation, cost-effective

Blackbox Security Whitebox Security

• Approach: Source level code auditing
• Requirements: Source code needed
• Focus: Web, backend Infra, Mobile DApp, API, SDK
• Features: Comprehensive and high coverage,

line-by-line review to uncover hidden bugs

● Infrastructure
● Front-end/client side security
● Server side APIs
● Data protection ● Cross Chain Bridge

○ Deposit/Withdraw Logic

○ On-chain Event Processing

● GameFi
○ Game Cheating/Anti-Scripting Measures

● Marketplace/DEX/Lending
○ Client-side vulnerabilities(e.g. XSS

○ Trading logic assessment

❖ OWASP Web

❖ OWASP MASVS +

MASTG

Apply Standards CERTIFICATIONS

Advanced Web3 DApp Penetration TestingExchange pentest that covers beyond
Web2 vulnerabilities.

Comprehensive wallet security audit with a focus on key
safety.

Comprehensive Blockchain Dynamic
Testing: Elevating Security Beyond
Source Code Review

Crypto Exchange Wallet DApp Blockchain

❖ NIST
❖ PTES
❖ CVSS

Specialized pentest expertises with deep
knowledge in blockchain and smart contracts,
understanding unique Web3 attack vectors.

Tailor Web3 Pentest Solutions For

Cover Exchange Specific Logics

✔ "Fake" deposits
✔ KYC/Onboarding process
✔ Buying with fiat
✔ Asset exchange: Manipulation risks
✔ Trading: Price and date tricks
✔ Loans: Valuation issues

MPC Wallet Assessment

✔ Multi-party Interaction
✔ Network Communication
✔ Backup Security

Full Wallet Platforms

✔ Web & Mobile
✔ Chrome Extension

Cover Wallet Risks

✔ Randomness
✔ Key Handling
✔ Use of Cryptography

✔ Key Generation & Storage
✔ User Protections
✔ Transaction Integrity

✔ Infrastructure
✔ Desktop Application

✔ Share generation & storage
✔ MPC Cryptography Impl. Assessment Types

✔ Network Penetration Testing
✔ Architecture Review
✔ Cloud Infrastructure Security Review
✔ Performance Testing

Title 106

Question?

Securing The Web3 World

Protect your community and your organization today.
Visit CertiK.com Get in touch at bd@certik.com

