
Ronghui Gu

Columbia University

Scaling the Blockchain

Course website: https://verigu.github.io/6998Fall2025/

https://verigu.github.io/6998Fall2025/

Problem: low throughput of blockchain

• Decentralization leads to lower throughput and higher latency than
centralized solutions

• Consensus protocols require multiple nodes to exchange messages

• PoW requires time

• May need to wait for confirmation

Bitcoin throughput

Bitcoin throughput limited by block size

1 MB/block
~250 B/tx
➔ 4000 tx/block

10 min/block
➔ Max: 6.7 tx/s

Ethereum throughput limited by gas

~21K gas/tx
12.5M gas/block
➔ 600 tx/block

15 s/block
➔ Max 40tx/s

Credit card tx throughput

Example: Visa ~2000tx/s, max 65000 tx/s

(Christmas shopping season)

Raising block size or gas limit

Throughput directly depends on block size or gas limit.

Why not simply raise them?

Network delay and consensus security depends on them

Additional issue: Latency (delay till tx confirmation)

Idea: record only settlement on blockchain

☕

tx1: 0.01 BTC

Settlement tx: 0.03BTC blockchain

• Save fewer tx on chain if everything goes well ➔ higher throughput, lower tx fee

• Use blockchain to resolve any dispute

☕

tx2: 0.01 BTC

☕

Tx3: 0.01 BTC

Ways to scale blockchain

• Payment channel or state channel
• Peer-to-peer channel for payment or contract tx

• Settlement = net transfers or final state changes

• Rollups
• Rollup server aggregates tx list

• Settlement = commitment of tx list

Payment Channels And State Channels1

Motivating application: micropayments

• Upfront payment? Bob may not provide full service

• Pay after service? Alice may not pay

Example: Alice hires Bob for 100 min service at 0.01 BTC/min

• Alice pays 0.01 BTC after every min of Bob service

A solution

Works only if tx fee is low (<< 0.01 BTC)!

Unidirectional payment channel in bitcoin (broken)

 In: txA; Out: 0.01B, 0.99A signed by Atx11st min

 In: txA; Out: 0.02B, 0.98A signed by Atx22nd min

 In: txA; Out: 0.03B, 0.97A signed by Atx33rd min

Done

Attack:
Alice can double

spend txA

Bob publishes only tx3

 In:… Out: 1.0 AtxA

blockchain

Fixing double spend

 In:… Out: 1.0  AtxA

 In: txAB; Out: 0.01B, 0.99A signed by Atx11st min

 In: txAB; Out: 0.02B, 0.98A signed by Atx22nd min

 In: txAB; Out: 0.03B, 0.97A signed by Atx33rd min

Done Bob signs and publishes
only final tx (tx3)

 In: txA; Out: 1.0  2-2 mutisig A,B signed by AtxAB

blockchain

Attack:
 Bob never signs

Fixing locked fund using timeout

 In:… Out: 1.0  AtxA

Bob sends Alice a refund tx before Alice publishes the multisig tx
Alice publishes Bob’s refund tx if Bob never publishes final tx

 In: txAB; Out: if time > unlock_time

 then 1.0 A signed by B

txB

blockchain

 In: txA; Out: 1.0 2-2 mutisig A, B signed by AtxAB

Uni. payment channel in Ethereum

Implemented as smart contract

 close(): recipient calls to close out the channel

 claimTimeout(): sender calls to reclaim remaining fund

Easier than Bitcoin because accounts have states

Example implementation in Solidity

Bidirectional payment channel

Implement using two unidirectional channels?

Alice and Bob want to move funds back and forth

Bidirectional payment channel contract

• Contract state tracks balances of both users
• Users agree on new account balances off chain
• Both users sign the state update, and send to contract
• Contract verifies the signatures before updating state

• Security: use nonce to prevent premature channel closures

Bidirectional payment channel example

Implement using two unidirectional channels?

A: 0.6, Bob: 0.4 Nonce 1
Alice Bob

Shared Account:
A: 0.5 ETH, B: 0.5 ETH Nonce 0

Bidirectional payment channel example

Implement using two unidirectional channels?

A: 0.3, Bob: 0.7 Nonce 2
Alice Bob

Shared Account:
A: 0.6 ETH, B: 0.4 ETH Nonce 1

Closing bidirectional payment channel

Implement using two unidirectional channels?

Shared Account:
A: 0.3 ETH, B: 0.7 ETH Nonce 2

Before funding Alice and Bob sign initial state

Alice submits balances and signatures to contract.
-> Starts challenge period
If Bob can submit tx with greater nonce: New state is valid

State channels

Shared Contract:
State: board state Nonce i

• Smart contracts support rich tx than just payments
• State channels generalize payment channels to arbitrary two-party smart contracts

Bitcoin bidirectional payment channels

Solution:

When updating the channel to Alices benefit,

Alice gets TX that invalidates Bob’s old state

Problem:
UTXOs have no global state -> Can’t store nonce

UTXO payment channel concepts

Intuition: Both A and B hold TXs they can submit to settle the current split balance. Balance is
updated by exchanging new TXs and “invalidating” old. Unilateral settlement is time-locked for one
party, allows the other to challenge by providing hash-lock preimage. TXs invalidated by exchanging
hash-lock preimages.

• Relative time-lock: output can be claimed timesteps (i.e., blocks)

from the time the TX is accepted to the blockchain

• Hash lock: Claiming output is pre-conditioned on providing the

preimage of a cryptographic hash

𝑡

UTXO payment channel

2-of-2 Multisig Address C:

X=H(x)

Y=H(y)
Random x Random y

UTXO payment channel

2-of-2 Multisig Address C:

X=H(x)

Y=H(y)
Random x Random y

TX1 from C:
Out1: Pay 7 -> A
Out2: Either 3 -> B (7 Day timelock)
 Or 3 -> A given y s.t. H(y)=Y
Alice

TX2 from C:
Pay 3 -> B
Either 7 -> A (7 Day timelock)
Or 7 -> B given x s.t. H(x)=X
Bob

UTXO payment channel

2-of-2 Multisig Address C:

X=H(x)

Y=H(y)
Random x Random y

TX1 from C:
Out1: Pay 7 -> A
Out2: Either 3 -> B (7 Day timelock)
 Or 3 -> A given y s.t. H(y)=Y
Alice

TX2 from C:
Pay 3 -> B
Either 7 -> A (7 Day timelock)
Or 7 -> B given x s.t. H(x)=X
Bob

7 3A: 7BTC, B: 3 BTC

UTXO payment channel update

2-of-2 Multisig Address C:
A: 6 BTC, B: 4 BTC

X’=H(x’)
X

Random x’

UTXO payment channel update

2-of-2 Multisig Address C:
A: 6 BTC, B: 4 BTC

X’=H(x’)
X

Random x’

TX3 from C:
Out1: Pay 6 -> A
Out2: Either 4 -> B (7 Day timelock)
 Or 4 -> A given y s.t. H(y)=Y
Alice

TX4 from C:
Pay 4 -> B
Either 6 -> A (7 Day timelock)
Or 6 -> B given x’ s.t. H(x’)=X’
Bob

UTXO payment channel update

2-of-2 Multisig Address C:
A: 6 BTC, B: 4 BTC

X’=H(x’)
X

Random x’

TX3 from C:
Out1: Pay 6 -> A
Out2: Either 4 -> B (7 Day timelock)
 Or 4 -> A given y s.t. H(y)=Y
Alice

TX4 from C:
Pay 4 -> B
Either 6 -> A (7 Day timelock)
Or 6 -> B given x’ s.t. H(x’)=X’
Bob

UTXO payment channel update

2-of-2 Multisig Address C:
A: 6 BTC, B: 4 BTC

X’=H(x’) X

Random x’

TX3 from C:
Out1: Pay 6 -> A
Out2: Either 4 -> B (7 Day timelock)
 Or 4 -> A given y s.t. H(y)=Y
Alice

TX4 from C:
Pay 4 -> B
Either 6 -> A (7 Day timelock)
Or 6 -> B given x s.t. H(x’)=X’
Bob

Security

TX3 from C:
Pay 6 -> A
Either 4 -> B (7 Day timelock)
Or 4 -> A given y s.t. H(y)=Y
Alice

TX4 from C:
Pay 4 -> B
Either 6 -> A (7 Day timelock)
Or 6 -> B given x’ s.t. H(x’)=X’
Bob

TX1 from C:
Pay 7 -> A
Either 3 -> B (7 Day timelock)
Or 3 -> A given y s.t. H(y)=Y
Alice

TX2 from C:
Pay 3 -> B
Either 7 -> A (7 Day timelock)
Or 7 -> B given x s.t. H(x)=X
Bob

Alice has TX2,TX4 Bob has TX1,TX3, x

UTXO payment channel update

2-of-2 Multisig Address C:
A: 8 BTC, B: 2 BTC

Y’=H(y’)

Random y’

Y

UTXO payment channel update

2-of-2 Multisig Address C:
A: 8 BTC, B: 2 BTC

Y’=H(y’)

Random y’

Y

TX5 from C:
Pay 8 -> A
Either 2 -> B (7 Day timelock)
Or 2 -> A given y s.t. H(y’)=Y’
Alice

TX6 from C:
Pay 2 -> B
Either 8 -> A (7 Day timelock)
Or 8 -> B given x s.t. H(x’)=X’
Bob

UTXO payment channel update

2-of-2 Multisig Address C:
A: 8 BTC, B: 2 BTC

Y’=H(y’)

Random y’

Y

TX5 from C:
Pay 8 -> A
Either 2 -> B (7 Day timelock)
Or 2 -> A given y s.t. H(y’)=Y’
Alice

TX6 from C:
Pay 2 -> B
Either 8 -> A (7 Day timelock)
Or 8 -> B given x s.t. H(x’)=X’
Bob

UTXO payment channel update

2-of-2 Multisig Address C:
A: 8 BTC, B: 2 BTC

Y’=H(y’)

Random y’
Y

TX5 from C:
Pay 8 -> A
Either 2 -> B (7 Day timelock)
Or 2 -> A given y s.t. H(y’)=Y’
Alice

TX6 from C:
Pay 2 -> B
Either 8 -> A (7 Day timelock)
Or 8 -> B given x s.t. H(x’)=X’
Bob

Security

TX5 from C:
Pay 8 -> A
Either 2 -> B (7 Day timelock)
Or 2 -> A given y s.t. H(y’)=Y’
Alice

TX6 from C:
Pay 2 -> B
Either 8 -> A (7 Day timelock)
Or 8 -> B given x s.t. H(x’)=X’
Bob

TX3 from C:
Pay 6 -> A
Either 4 -> B (7 Day timelock)
Or 4 -> A given y s.t. H(y)=Y
Alice

TX2 from C:
Pay 3 -> B
Either 7 -> A (7 Day timelock)
Or 7 -> B given x s.t. H(x)=X
Bob

Alice has TX2,TX6, y Bob has TX3,TX5, x

Multi-hop payments

Pay through untrusted intermediary

Lightning network

R=H(r)

Random r

Lightning network

R=H(r)

Random r

B claims 1.01 BTC with r

Pay 1.01 BTC to B
Hashlocked with R
Timelock to refund

Pay 1 BTC to C
Hashlocked with R
Timelock to refund

C claims 1 BTC with r

Watchtowers

Lightning requires nodes to be periodically online to check for claim TX

Watchtowers outsource this task

User gives latest state to watchtower.

Rollups2

Rollups

A rollup is a Layer 2 scaling solution for blockchains, designed to improve
throughput and reduce transaction costs. Rollups work by processing most
transactions off-chain (on Layer 2) while still leveraging the Layer 1
blockchain (like Ethereum) for security and data availability.

Rollups

1. Batching Transactions:

• Transactions are processed in bulk on the rollup layer (Layer 2).

• These transactions are compressed and aggregated into a single "batch"
to be submitted to the main chain.

Rollups

2. Data Submission:

• Essential data or proofs about the transactions are posted on Layer 1 to
ensure they can be verified independently.

Rollups

3. Validation:

• The rollup mechanism uses cryptographic proofs and economic incentives
to validate transactions and prevent fraud.

Types of Rollups

Rollups are classified based on how they verify transactions:

1. Optimistic Rollups

2. ZK Rollups

Optimistic Rollups

• How It Works: Transactions are assumed to be valid by default. Disputes
are resolved using fraud proofs.

• Fraud Proofs: If an invalid transaction is suspected, anyone can challenge
it by submitting a fraud proof to Layer 1.

• Advantages: Lower computational costs for verifying transactions.
Supports complex smart contracts.

• Disadvantages: Requires a dispute period (typically several days),
delaying withdrawals.

• Examples: Arbitrum, Optimism.

ZK Rollups

• How It Works: Every batch of transactions generates a cryptographic
proof (e.g., ZK-SNARK or ZK-STARK) that is submitted to Layer 1. The
proof instantly verifies the validity of the transactions.

• Validation Proofs: These proofs ensure transactions are correct without
revealing sensitive details.

• Advantages: Immediate finality (no dispute period). Smaller data footprint
on Layer 1, improving efficiency.

• Disadvantages: Generating zero-knowledge proofs is computationally
intensive.

• Examples: zkSync, Polygon zkEVM, ZKWasm.

