Scaling the Blockchain

Ronghui Gu

Columbia University

Course website: https://verigu.github.io/6998Fall2025/

https://verigu.github.io/6998Fall2025/

Problem: low throughput of blockchain

e Decentralization leads to lower throughput and higher latency than

centralized solutions

e Consensus protocols require multiple nodes to exchange messages

e Po\W requires time

e May need to walit for confirmation

Bitcoin throughput

Transaction Rate

3.956 tps

¢

4.15 tps

3.70 tps

3.24 tps

2.78 1ps

2.33 tps

2016-07-11 blockchain.com/charts 2020-10-12

Bitcoin throughput limited by block size

Average Block Size

¢

1.23 MB
1 MB/block
| ~250 B/tx
1.03 MB -=> 4000 tx/block
004.5 kB
A 10 min/block

-> Max: 6.7 tx/s

2017-10-14 blockchain.com/charts 2020-10-11

Ethereum throughput limited by gas

Transactions per second

— O
16 — O

15.5 ==
15 = .
14.5 = Ethereum mL
4 | |
i Aug 08, 2020

12.5 = o Ethereum: 13.685254629629629

12 = I

11.5 = i (] "
11—

10.5 =
10 =—
9.5 =

O
8.5 =
8
7.5 =
7 —
6.5 =
6 —
55 =
5 —
4.5 =
4 —
3.5 —
3 —

15 s/block

1.5 =

= - Max 40tx/s

0= T | | | | | | |] |
Jul 30, 2015 Feb 06, 2016 Aug 15, 2016 Feb 22, 2017 Sep 01, 2017 Mar 11, 2018 Sep 18, 2018 Mar 28, 2019 Oct 05, 2019 Apr 13, 2020

~21K gas/tx
12.5M gas/block
-> 600 tx/block

Credit card tx throughput

Example: Visa ~2000tx/s, max 65000 tx/s

(Christmas shopping season)

Raising block size or gas limit

Throughput directly depends on block size or gas limit.

Why not simply raise them?

Network delay and consensus security depends on them

Additional issue: Latency (delay till tx confirmation)

Idea: record only settlement on blockchain

tx1: 0.01 BTC
tx2: TC
TX . TC

> & @
Settlement tx;: 0.03BTC —mm>

oy

S
o
o
o
o
>
=
S

e Save fewer tx on chain if everything goes well = higher throughput, lower tx fee

e Use blockchain to resolve any dispute

Ways to scale blockchain

- Payment channel or state channel
» Peer-to-peer channel for payment or contract tx

» Settlement = net transfers or final state changes

* Rollups
* Rollup server aggregates tx list

« Settlement = commitment of tx list

Payment And State

Motivating application: micropayments

Example: Alice hires Bob for 100 min service at 0.01 BTC/min

 Upfront payment? Bob may not provide full service

» Pay after service? Alice may not pay

A solution

» Alice pays 0.01 BTC after every min of Bob service

Works only if tx fee is low (<< 0.01 BTC)!

Unidirectional payment channel in bitcoin (broken)

In:... Out: 1.0 2A

-
15t min In: txA; Out: 0.01>B, 0.99DA (i by a Attack:
Alice can double
spend txA
2nd min In: txA; Out: 0.02->B, 0.98 DA eq by A
3rd min

In: tXA, Out: 00398, 0.972A signed by A ﬁ

Done Bob publishes only tx3

uleyaoo|q

Fixing double spend

In;... Out: 1.0> A —_—
In: txA; Out: 1.0 > 2-2 mutisig A,B ;. o4 oy »
1st min : . .
In: txAB; Out: 0.01->B, 0.99DA (i, q by A Attack
Bob never signs
2nd min In: txAB; Out: 0.02->B, 0.98DA (neqby A
3rd min In: txAB; Out: 0.03>B, 0.97 DA gneq by A —_— S
Bob signs and publishes
Done . ;

only final tx (tx3)

uleyay2o0|q

Fixing locked fund using timeout

In: tXAB; Out: if time > unlock_time

i

then 1.0 2A (. cqbys

B30b sends Alice a refund tx betore Alice publishes the multisig tx

Alice publishes Bob's refund tx if Bob never publishes final tx

In:... Out: 1.0 9 A —

In: txA; Out: 1.0 2-2 mutisig A, B jyeq by A —_—

uleyayoo0jg

Uni. payment channel in Ethereum

Implemented as smart contract
close(): recipient calls to close out the channel

claimTimeout(): sender calls to reclaim remaining fund

Easier than Bitcoin because accounts have states

Example implementation in Solidity

O} Home UniChannel.sol
1 pragma solidity >=0.4.24 <0.6.0;

contract SimplePaymentChannel (§
address payable public sender; // The account sending payments.
address payable public recipient; // The account receiving the payments.
uint256 public expiration; // Timeout in case the recipient never closes.

constructor (address payable _recipient, uint256 duration)
public
payable

sender = msg.sender;
recipient = _recipient;
expiration = now + duration;

/// the recipient can close the channel at any time by presenting a
/// signed amount from the sender. the recipient will be sent that amount,
/// and the remainder will go back to the sender
function close(uint256 amount, bytes memory signature) public {
require(msg.sender == recipient);
require(isValidSignature(amount, signature));

recipient.transfer(amount);
selfdestruct(sender);

}

/// 1f the timeout is reached without the recipient closing the channel,
/// then the Ether i1s released back to the sender.
function claimTimeout() public {

require(now >= expiration);

selfdestruct(sender);

Bidirectional payment channel

Alice and Bob want to move funds back and forth

i

Implement using two unidirectional channels?

Bidirectional payment channel contract

» Contract state tracks balances of both users
* Users agree on new account balances off chain
* Both users sign the state update, and send to contract

» Contract verities the signatures before updating state

* Security: use nonce to prevent premature channel closures

Bidirectional payment channel example

Shared Account:

A: 0.5 ETH, B: 0.5 ETH Nonce O

i

A: 0.6, Bob: 0.4 Nonce 1

AlLce

Bob

Bidirectional payment channel example

Shared Account:

A: 0.6 ETH, B: 0.4 ETH Nonce 1

i

A: 0.3, Bob: 0.7 Nonce 2

AlLce

Bob

Closing bidirectional payment channel

Shared Account:
A: 0.3 ETH, B: 0.7 ETH Nonce 2

i

Before funding Alice and Bob sign initial state

Alice submits balances and sighatures to contract.
-> Starts challenge period

If Bob can submit tx with greater nonce: New state is valid

State channels

* Smart contracts support rich tx than just payments

* State channels generalize payment channels to arbitrary two-party smart contracts

Shared Contract:
State: board state Nonce i

i

Bitcoin bidirectional payment channels

Problem:
UTXOs have no global state -> Can't store nonce

Solution:

When updating the channel to Alices benetit,

Alice gets TX that invalidates Bob's old state

UTXO payment channel concepts

 Relative time-lock: output can be claimed ¢ timesteps (i.e., blocks)

from the time the TX is accepted to the blockchain

e Hash lock: Claiming output is pre-conditioned on providing the

preimage of a cryptographic hash

Intuition: Both A and B hold TXs they can submit to settle the current split balance. Balance is
updated by exchanging new TXs and “invalidating” old. Unilateral settlement is time-locked for one
party, allows the other to challenge by providing hash-lock preimage. TXs invalidated by exchanging
hash-lock preimages.

UTXO payment channel

e

Random x

2-of-2 Multisig Address C:

X=H(x)

Y=H(y)

UTXO payment channel

2-of-2 Multisig Address C:

X=H(x)
Random x
TX1 from C: TX2 from C:
Outl: Pay 7 -> A Pay 3->B
Out2: Either 3 -> B (7 Day timelock) Either 7 -> A (7 Day timelock)
Or 3 -> A giveny s.t. H(y)=Y Or 7 -> B given x s.t. H(x)=X
Altee BOb

UTXO payment channel

2-of-2 Multisig Address C:

7 A: /BTC, B: 3 BTC 3
X=H(x)
Random x
TX2 from C: TX1 from C:
Pay3->B Outl: Pay 7 -> A

Either 7 -> A (7 Day timelock)
Or 7 -> B given x s.t. H(x)=X

Bob

Out2: Either 3 -> B (7 Day timelock)
Or 3 -> A given y s.t. H(y)=Y

AlLce

UTXO payment channel update

X

e

Random x’

2-of-2 Multisig Address C:
A: 6 BTC, B: 4 BTC

X'=H(x’)

UTXO payment channel update

2-of-2 Multisig Address C:
A: 6 BTC, B: 4 BTC

X
,_%\ X'=H(x’)
Random x’
TX4 from C;:
TX3 from C: Pay 4 -> B

Outl: Pay 6 -> A
Out2: Either 4 -> B (7 Day timelock)
Or 4 -> A given y s.t. H(y)=Y

AlLce

Either 6 -> A (7 Day timelock)
Or 6 -> B given x’ s.t. H(x")=X’
Bob

UTXO payment channel update

2-of-2 Multisig Address C:
A: 6 BTC, B: 4 BTC

X
,_%\ X'=H(x’)
Random x’
TX4 from C; TX3 from C:
Pay 4 -> B Outl: Pay 6 -> A

Either 6 -> A (7 Day timelock)
Or 6 -> B given x’ s.t. H(x")=X’
Bob

Out2: Either 4 -> B (7 Day timelock)
Or 4 -> A given y s.t. H(y)=Y

AlLce

UTXO payment channel update

2-of-2 Multisig Address C:
A: 6 BTC, B: 4 BTC

g X'=H(x’) X
Random x’
TX4 from C; TX3 from C:
Pay 4 -> B Outl: Pay 6 -> A

Either 6 -> A (7 Day timelock)
Or 6 -> B given x s.t. H(x')=X’
Bob

Out2: Either 4 -> B (7 Day timelock)
Or 4 -> A given y s.t. H(y)=Y

AlLce

Security

Alice has TX2,TX4 Bob has TX1,TX3, x

TX2 from C: TX1 from C:

Pay 3 ->B Pay 7 -> A

Either 7 -> A (7 Day timelock) Either 3 -> B (7 Day timelock)
Or 7 -> B given x s.t. H(x)=X Or 3 -> A given y s.t. H(y)=Y

Bob AlLce

TX4 from C: TX3 from C:

Pay 4 -> B Pay 6 -> A

Either 6 -> A (7 Day timelock) Either 4 -> B (7 Day timelock)
Or 6 -> B given x’ s.t. H(x")=X’ Or 4 -> A given y s.t. H(y)=Y
Bob AlLee

UTXO payment channel update

e

2-of-2 Multisig Address C:
A: 8 BTC, B: 2 BTC

UTXO payment channel update

2-of-2 Multisig Address C:
A: 8 BTC, B: 2 BTC

Y’=H(y’)

e

TX5 from C:

Pay 8 -> A

Either 2 -> B (7 Day timelock)
Or 2 -> A givenys.t. H(y')=Y’
Altee

TX6 from C:

Pay 2 ->B

Either 8 -> A (7 Day timelock)
Or 8 -> B given x s.t. H(x')=X’
Bob

UTXO payment channel update

2-of-2 Multisig Address C:
A: 8 BTC, B: 2 BTC

Y’=H(y’)

e

TX6 from C:

Pay 2 ->B

Either 8 -> A (7 Day timelock)
Or 8 -> B given x s.t. H(x')=X’
Bob

TX5 from C:

Pay 8 -> A

Either 2 -> B (7 Day timelock)
Or 2 -> A givenys.t. H(y')=Y’
AlLee

UTXO payment channel update

2-of-2 Multisig Address C:
A: 8 BTC, B: 2 BTC

,_%\ Y’=H(y’)
Y

TX6 from C:

Pay 2 ->B

Either 8 -> A (7 Day timelock)
Or 8 -> B given x s.t. H(x')=X’
Bob

TX5 from C:

Pay 8 -> A

Either 2 -> B (7 Day timelock)
Or 2 -> A givenys.t. H(y')=Y’
AlLee

Security

Alice has TX2,TX6, vy Bob has TX3,TX5, x

TX2 from C: TX3 from C:

Pay 3 ->B Pay 6 -> A

Either 7 -> A (7 Day timelock) Either 4 -> B (7 Day timelock)
Or 7 -> B given x s.t. H(x)=X Or 4 -> A given y s.t. H(y)=Y

Bob AlLce

TX6 from C: TX5 from C:

Pay 2 ->B Pay 8 -> A

Either 8 -> A (7 Day timelock) Either 2 -> B (7 Day timelock)
Or 8 -> B given x s.t. H(x")=X’ Or 2 -> A givenys.t. H(y')=Y’
Bob AlLee

Multi-hop payments

e

Pay through untrusted intermediary

Lightning network

e

Random r

Lightning network

R=H(r)

e

Pay 1.01 BTCto B
Hashlocked with R
Timelock to refund

B claims 1.01 BTC with r

Pay 1 BTCto C
Hashlocked with R
Timelock to refund

Cclaims 1 BTC with r

Random r

Watchtowers

Lightning requires nodes to be periodically online to check for claim TX
Watchtowers outsource this task

User gives latest state to watchtower.

Rollups

A rollup Is a Layer 2 scaling solution for blockchains, designed to improve
throughput and reduce transaction costs. Rollups work by processing most
transactions off-chain (on Layer 2) while still leveraging the Layer 1
blockchain (like Ethereum) for security and data availabillity.

Rollups

1. Batchi

ng Transactions:

® [ransactions are processed in bulk on the rollup layer (Layer 2).

e [hese

ransactions are compressed and aggregated into a single "batch’

to be s

Jbmitted to the main chain.

Rollups

2. Data Submission:

e Essential data or proofs about the transactions are posted on Layer 1 to
ensure they can be veritied independently.

Rollups

3. Validation:

* The rollup mechanism uses cryptographic proofs and economic incentives
to validate transactions and prevent fraud.

Types of Rollups

Rollups are classified based on how they verity transactions:
1. Optimistic Rollups

2. ZK Rollups

Optimistic Rollups

e How It Works: Transactions are assumed to be valid by default. Disputes
are resolved using fraud proofs.

 Fraud Proofs: It an invalid transaction is suspected, anyone can challenge
it by submitting a fraud proof to Layer 1.

e Advantages: Lower computational costs for veritying transactions.
Supports complex smart contracts.

e Disadvantages: Requires a dispute period (typically several days),
delaying withdrawals.

e Examples: Arbitrum, Optimism.

ZK Rollups

e How It Works: Every batch of transactions genera
proof (e.g., ZK-SNARK or ZK-STARK) that is submi

es a cryptographic

+
oroof instantly verities the validity of the transactior

ted to Layer 1. The
S.

e \alidation Proofs: These proofs ensure transactions are correct without

revealing sensitive detalils.

e Advantages: Immediate finality (no dispute period). Smaller data footprint

on Layer 1, improving efticiency.

e Disadvantages: Generating zero-knowledge proofs is computationally

intensive.

e Examples: zkSync, Polygon zkEVM, ZKWasm.

