Ethereum Mechanics

Ronghui Gu
Fall 2025

Columbia University

Course website: https://verigu.github.io/6998Fall2025/

https://verigu.github.io/6998Fall2025/

Ethereum

Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform.
By Vitalik Buterin (2014).

When Satoshi Nakamoto first set the Bitcoin blockchain into motion in January 2009, he was
simultaneously introducing two radical and untested concepts. The first is the "bitcoin”, a decentralized
peer-to-peer online currency that maintains a value without any backing, intrinsic value or central issuer. So
far, the "bitcoin” as a currency unit has taken up the bulk of the public attention, both in terms of the political
aspects of a currency without a central bank and its extreme upward and downward volatility in price.
However, there is also another, equally important, part to Satoshi's grand experiment: the concept of a proof of
work-based blockchain to allow for public agreement on the order of transactions. Bitcoin as an application can
be described as a first-to-file system: if one entity has 50 BTC, and simultaneously sends the same 50 BTC to

A and to B, only the transaction that gets confirmed first will process. There is no intrinsic way of determining

ETH MarketCap

Chart Markets News NFTs® About Analytics Similar Coins Yields®

4 Ethereumc:TH HaAM <
$2 6 3 Oo 9 9 * 2.16% (1d) Price. Market cap N7 90 |£ TradingView Compare with v D 7D ™ 1Y Al LOG
]
Market cap -~ 216% $316,673,623,870
#2
Volume (24h) - 1618% $17,095,698,814 o
#3
2,64
Volume/Market cap (24h) 5.39%
2,63
Circulating supply @ 120,362,772 ETH 2 62
Total supply 120,362,772 ETH
Max. supply oo |
Fully diluted market cap $316,659,857,881 A 2 58
Contracts)
BNB Smart Chain (BEP20): 0x2170...f933f8 (1 @ R
More 2,54
Official links
uUs
@ Website] Whitepaper () GitHub 3:00 AM 6:00 AM 9:00 AM 12:00 PM 3:00 PM 6:00 PM 9:00 PM 27 Sep

OV

of Bitcoin

Review of Bitcoin Script: P2PKH (Pay to Public Key Hash)

Alice want to pay Bob 5 BTC

e Step1: Bob generates key pair (pk_B, sk_B)

e Step2: Bob computes his BTC address as addr_B <— H(pk

e Step3: Bob sends addr_b to Alice

e Step4d: Alice broadcasts TX:
Input[O0] output[O] output[1]

Tx2 | TxID1 O ScriptSig_A |Val: 5 ScriptPK_B

ScriptPK_B = DUP HASH256 < addr_B > EQVERIFY CHECKSIG

Review of Bitcoin Script: P2PKH (Pay to Public Key Hash)

Later, when Bob wants to spend his UTXO, he creates Tx 3

Input[O0] output[O] output[1]

Tx3 | TxID2 O ScriptSig_Bj...

T

<SIg> <pk_B>

|

<sig>= Sign (sk_B, Tx') where Tx' = Tx 3 excluding ScriptSigs

Review of Bitcoin Script: P2PKH (Pay to Public Key Hash)

Input[O]

output[O]

output[1]

Tx 2 | Ixl

D1 0 ScriptSig_A

Val: 5 Script

PK_B

Input[O]

ScriptPK

output[O]

53/ DUP HASH256 < addr_B > EQVERIFY CHECKSIG

output[1]

Tx3 | Txl

D2 0 ScriptSig_B|...

<Sig>= Sign (sk_

|

<SIg> <pk_

T

3>

3, Ix') where Tx' = Tx 3 excluding ScriptSigs

Review of Bitcoin Script: P2PKH (Pay to Public Key Hash)

<sig> <pk_B> DUP HASH256 <addr_B> EQVERIFY CHECKSIG

Stack

[]

[<Sig> <pk_B>]

| <sig> <pk_B> <pk_B>]

[<sig> <pk_B> <addr_B>]

[<sig> <pk_B> <addr_B> <addr_B>]
| <sig> <pk_B>]

[1]

Init

Push values

DUP

HASH256 addr_B <— H(pk
Push values

EQVERIFY

CHECKSIG <sig>= Sign (sk_

3, Tx)

Limitations of Bitcoin

UTXO contains (hash of) ScriptPK
e Simple script: indicates conditions when UTXO can be spent

e UTXO matches outputs and inputs, but does not track states explicitly

Limitations

e Difficult to maintain state in multi-stage contracts

e Difficult to enforce global rules on assets

® xample: rate limiting

® Desired policy: can only transfer 2BTC per day out of my wallet

An Example: NameCoin

Domain name system on the blockchain: [certik.com —> |IP Addr]

Need support for three operations:

e Name.new(OwnerAddr, DomainName): intent to register

e Name.update(DomainName, newVal, newOwner, Ownersig)

e Name.lookup(DomainName)

http://certik.com

An Example: NameCoin

Name.new and Name.update create a UTXO with ScriptPK:

DUP HASH256 <OwnerAddr> EQVERIFY CHECKSIGVERIFY)
@W DomainName> <IPAddr

only owner can spend this UTXO to update domain data:

Contract: if certik.com Is registered, no on else can register the domain

Problem: this contract cannot be enforced just using Bitcoin script

http://certik.com

An Example: NameCoin

Namecoin: fork of Bitcoin that implements this contract

Can we build a blockchain that is programmable to
support generic contracts?

>

v

ethereum

Ethereum: Enables a World of DApps

e New coins: ERC-20 Intertace to DApps.

® Dell: exchanges, lending, stablecoins, etc.

e NFTs: ERC-721 Interface to manage distinguished assets

Token #1159

® (Games: assets managed on chain 188.88

% Buy Now 2 Add

Bitcoin as a State Transition System

World State Updated World State

UTXOT
UTXO3

Inputs

Tx: UTXO2 —> UTXO3

Ethereum System

Layer1 (ETHv1)
® Po\W consensus
® Block reward =2 ETH + Tx fees (gas)
® Avg block rate = 15s
® ~ 150 Tx per block
ETHv2:
® PoS (Proof of Stake) consensus

® Sept 15, 2022

Latest Blocks

D

20836690
12 secs ago

20836689
24 secs ago

20836688
36 secs ago

20836687
48 secs ago

20836686

1 min ago

20836685
1 min ago

Fee Recipient Titan Builder
199 txns in 12 secs

Fee Recipient Flashbots: Builder 2
208 txns in 12 secs

Fee Recipient 0x62d4d378...7098bC3fF
172 txns in 12 secs

Fee Recipient beaverbuild
144 txns in 12 secs

Fee Recipient Titan Builder
171 txns in 12 secs

Fee Recipient beaverbuild
143 txns in 12 secs

89 Customize

0.1318 Eth

0.10192 Eth

0.05933 Eth

0.13371 Eth

0.05323 Eth

0.09904 Eth

Ethereum Compute Layer: the EVM

World State: set of accounts identified by 32-byte address

Two types of accounts:

e Owned accounts: controlled by signing key pair (PK, SK)
® (Contracts: controlled by code

® Code set at account creation time

® [Does not change

Ethereum Compute Layer: the EVM

Contracts

Address

Code

State

Balance

Salance

Nonce

H(CreatorAddr,
CreatorNonce)

CodeHash

Storage

R00t

Salance

Nonce

ITx sent A

accounts createad

Account State: Persistent Storage

—very contract has an associated storage array SfJ:

o 5|0], S[1], ..., S[27A256 -1]: each cell holds 32 bytes, init to O.

Account storage root: Merkle Patricia Tree hash of S[]:

e \Why not directly using Merkel Tree hash?

Account State: Persistent Storage

—very contract has an associated storage array S[].

o 5[0], S[1], ..., S[27256 -1]: each cell holds 32 bytes, init to O.

Account storage root: Merkle Patricia Tree hash of S[]:

e \Why not directly using Merkel Tree hash??

State Transitions: Tx and Messages

Transactions: signed data by initiator
e To: 32-byte address of target (0 means creating new contract)

® From, [Sig]: initiator address and [signature on Tx if owned accounts]

e Value: #Wel being sent with Tx

e Tx fees (EIP 1559): gasLimit, maxFee, maxPriorityFee

e Code (If To = 0): (init, body)
e Data (If To !=0): what function to call and args

® Nonce: must match current nonce of sender

® Preventing Ix replay

State Transitions: Tx and Messages

Transaction Types

e Owned -> Owned: transfer ETH between users

® Owned -> Contract: call contract with ETH and data

Messages: same as [x, but no signature
® Contract -> Owned: contracts sends funds users

e (Contract -> Contract: one program calls another (and sends funds)

One Tx from user: can lead to many Tx and messages

e [x from Owned -> Contract -> another Contract -> Different Owned

State Transitions: Tx and Messages

State

14c5f8ba:
- 1024 eth

bb75a980: contract
- 5202 eth

If lcontract.storage[tx.datal0]):
contract.storage[tx.data[0]] = tx.datal1]

[0, 235235, 0, ALICE

892792 contract
- 0 eth

send(tx.value / 3, contract.storage[0])
send(tx.value / 3, contract.storage[1])
send(tx.value / 3, contract.storagel2))

[ALICE, BOB, CHARLIE]

4096ad65:;
- 77 eth

Transaction

From:
14c5f8ba
To:
bb75a980
Value:
10 eth
Data:
2,
CHARLIE
Sig:
30452fdedb3d
f7959f2ceb8al

State’

14c5f8ba:
- 1014 eth

bb75a980:

If Icon ract.storage([tx.datal0]]:
contract.storage[tx.data[0]] = tx.data[1)

[0, 23523ALICE §

892bf92f:
- 0 eth

send(tx.value / 3, contract.storage[0])
send(tx.value / 3, contract.storage[1))
send(tx.value / 3, contract.storage[2])

|[ALICE, BOB, CHARLIE]

4096ad65:
- 77 eth

An Ethereum Block

Miners: collect Txs from users

® [or each TXx, execute state change seqguentially

® Record updated world state in block

Leader: creates a block

Other miners: re-execute all Txs to verify the block
® Miners should only build on a valid block

® Miners are not paid for veritying block

Block Header Data (Simplified)

Consensus data: Prev hash, difficulty, PoOW solution, etc
Address of gas beneficiary: where Tx tees will go

World state root: updated world state

® Merkle Patricia Tree has of all accounts in the system
Tx root: Merkel hash of all Tx in the block
Tx receipt root: Merkel hash of log messages generated in the block

Gas used: tells verifier how much work to verity block

Contracts

An Example Contract: NameCoin

contract nameCoin { // Solidity code

struct namekntry {

address owner: // address of domain owner
bytes32 value; // IP address

}

// array of all registered domains

mapping (bytes32 => namekntry) data;

An Example Contract: NameCoin

function nameNew (bytes32 name) |{
// registration costs is 100 Wel
f (datalname] == 0 && msg.value >= 100) {
data|name].owner = msg.sender; // record domain owner

emit Register(msg.sender, name); // log event

An Example Contract: NameCoin

function nameUpdate (
bytes32 name, bytes32 newValue, address newOnwer) {
// check if message is from domain owner, and update if 10Wei is paid
if (data[name].owner == msg.sender && msg.value >= 10) {
data[name].value = newValue; // record new value

datalname].owner = newOwner; // record new owner

An Example Contract: NameCoin

function namelookup (bytes32 name) {

return data/name];

}

! /] end of contract

EVM Mechanics: Execution

Write code in Solidity (or another front-end language)

=> Compile to EVM bytecode

=> Miners use the EVM to execute contract bytecode

The EVM

Stack machine with JUMP

* Max stack depth = 1024

Program aborts if stack size exceeds; miner keeps gas

e Contract can create or call another contract

Two types of zero initialized memory

e \/olatile memory (for single Tx): MLOA

Persistent storage (on blockchain): SLOA

e | OGO(data): write data to log

D, OSTO

q

- (expensive)

D, MSTORE (cheap)

Every Instruction Costs Gas

SSTORE addr (32bytes), value (32bytes)
® /ero -> Non-Zero: 20,000 gas
e Non-Zero -> Non-Zero: 5,000 gas (for a cold slot)
e Non-Zero -> Zero: 15,000 gas refund

Refund: is given for reducing size of blockchain state

Every Instruction Costs Gas

SELFDESTRUCT addr (32bytes)
e Kill current contract

* [N the past, 24,000 gas refund

CREATE
e 32,000 + 200 * (code size) gas

Gas Calculation

Why charge gas?

e Prevents submitting Tx that runs for many steps

e During high load: miners choose Tx from the mempool with high gas

Old EVM (prior to EIP 1559)

e Every Tx contains a gasPrice “bid” (gas -> Wei conversion price)

 Miners choose Ix with highest gasPrice

® -irst price auction

e Not efficient

Gas Calculation (EIP 1559)

Every block has a “baseFee”:

* The minimum gasPrice for all Tx in the block

baseFee is computed from total gas in earlier blocks:

o |f earlier blocks as “target size” (15M gas) => baselee does not change

o |f earlier blocks at gas limit (30M gas) => baselFee goes up 12.5%

o |f earlier blocks empty => baselee decreases by 12.5%

Gas Calculation (EIP 1559)

EIP1559 Tx specifies three parameters:

e gasLimit: max total gas allowed for Tx

e maxFee: max allowed gas

Price

e maxPriorityFee: additional “tip” to be paid to miner

® gas

Price = min (max

-ee, base

—ee + max

Priority

-ee)

Let’s Look at a Transition

Transaction ID: Oxe3b0c810424edcad4d07a00a84...

e From: Ox628ebede3fe/738cda04a6f9al3/cch5e980c22ffc

e To: Contract Ox1a2a1c938cel3ecl39b6d4/7113c7955baa9dd454t2

e (Axie Infinity: Ronin Bridge)

e Value: 0.167 Ether

e Data: Function: depositEthfor [O]:
d256119bb3ca86c/7c9tcdaddabads5bd233150e6

Let’s Look at a Transition

Contract: Ox1a2a1c938ce3ec39b6d4/7113¢c/7955baad9dd45412

e (Axie Infinity: Ronin Bridge)

& Contract 0x1A2a1c938CE3eC39b6D47113c7955bAa9DDA54F2

Sponsored: 5‘; Sky is coming. Sign up to opt in for boosted token rewards.

! To deposit assets into the Ronin sidechain, users need to interact with the Ronin smart contract. Simply transferring assets to the contrac

@ Axie Infinity: Ronin Bridge [Source Code # Axie Infinity # Bridge

Overview More Info

ETH BALANCE PRIVATE NAME TAGS
$ 469.389308800993501801 ETH + Add

ETH VALUE CONTRACT CREATOR
$1,243,414.39 (@ $2,649.00/ETH) Axie Infinity: Deployer (L) at txn Oxb6bf3ce1639...

TOKEN HOLDINGS

$15,729.78 (46 Tokens)

Let’s Look at a Transition

Transactions Internal Transactions Token Transfers (ERC-20) NFT Transfers W Events Analytics Multichain Portfolio

m Read Contract Write Contract Read as Proxy Write as Proxy

© Contract Source Code Verified (Exact Match)

Contract Name: MainchainGatewayProxy
Compiler Version v0.5.17+commit.d19bba13

Contract Source Code (Solidity)

1~ /xk
2 *Submitted for verification at Etherscan.io on 2021-04-28
3 x/
4
5 // File: @axie/contract-library/contracts/access/HasAdmin.sol
6
7 pragma solidity "0.5.2;
8
9
10 ~ contract HasAdmin {
11 event AdminChanged(address indexed _oldAdmin, address indexed
12 event AdminRemoved(address indexed _oldAdmin);
13
14 address public admin;
15
16 + modifier onlyAdmin {
17 require(msg.sender == admin);
18 I
19 }
20
21~ constructor() internal {
22 admin = msg.sender;
23 emit AdminChanged(address(®), admin);
24 ¥

25

_newAdmin);

Search Source Code

Optimization Enabled: Yes with 200 runs

Other Settings: default evmVersion, None license

Outline v

B v

W Advanced Filter

More Options v

@ ®

N

Let’s Look at a Transition

Code Read Contract Write Contract Read as Proxy Write as Proxy

(® Descriptions included below are taken from the contract source code NatSpec. Etherscan does not provide any guarantees on their safety or accuracy.

@ Connect to Web3
Read Contract Information [Collapse All] [Reset]
1. admin o @® J

0x23D4817717fC407eeB8266dc45F4F8a1cCC5338FA address

2. depositCount 0 ® 4

1992467 uint256

3. deposits .
<input> (uint256)
<input> (uint256)
Query

address address address uint32 uint256

4. implementation 0 @ 4

Tells the address of the implementation where every call will be delegated.

0x8407dc57739bCDA7aA53CabF12F82F9d51¢c2F21E address

Discussion Session

How to raise funds?

