
Ronghui Gu
Fall 2025

Columbia University

Ethereum Mechanics

Course website: https://verigu.github.io/6998Fall2025/

https://verigu.github.io/6998Fall2025/

Ethereum

ETH MarketCap

Limitations of Bitcoin1

Review of Bitcoin Script: P2PKH (Pay to Public Key Hash)

Alice want to pay Bob 5 BTC

• Step1: Bob generates key pair (pk_B, sk_B)

• Step2: Bob computes his BTC address as addr_B <— H(pk_B)

• Step3: Bob sends addr_b to Alice

• Step4: Alice broadcasts TX:

Tx 2

Input[0] output[0]

Val: 5 ScriptPK_B …

output[1]

TxID1 0 ScriptSig_A

DUP HASH256 < addr_B > EQVERIFY CHECKSIGScriptPK_B =

UTXO (unspent TX output)

Review of Bitcoin Script: P2PKH (Pay to Public Key Hash)

Later, when Bob wants to spend his UTXO, he creates Tx 3

<sig>= Sign (sk_B, Tx’) where Tx’ = Tx 3 excluding ScriptSigs

Tx 3

Input[0] output[0]

… …

output[1]

TxID2 0 ScriptSig_B

<sig> <pk_B>

Review of Bitcoin Script: P2PKH (Pay to Public Key Hash)

Tx 3

Input[0] output[0]

… …

output[1]

TxID2 0 ScriptSig_B

<sig> <pk_B>

<sig>= Sign (sk_B, Tx’) where Tx’ = Tx 3 excluding ScriptSigs

DUP HASH256 < addr_B > EQVERIFY CHECKSIGScriptPK_B

Tx 2

Input[0] output[0]

Val: 5 ScriptPK_B …

output[1]

TxID1 0 ScriptSig_A

Review of Bitcoin Script: P2PKH (Pay to Public Key Hash)

<sig> <pk_B> DUP HASH256 <addr_B> EQVERIFY CHECKSIG

Stack
[] Init
[<sig> <pk_B>] Push values
[<sig> <pk_B> <pk_B>] DUP

[<sig> <pk_B> <addr_B> <addr_B>] Push values
[<sig> <pk_B>] EQVERIFY

[<sig> <pk_B> <addr_B>] HASH256 addr_B <— H(pk_B)

[1] CHECKSIG <sig>= Sign (sk_B, Tx’)

Limitations of Bitcoin

UTXO contains (hash of) ScriptPK

• Simple script: indicates conditions when UTXO can be spent

• UTXO matches outputs and inputs, but does not track states explicitly

Limitations

• Difficult to maintain state in multi-stage contracts

• Difficult to enforce global rules on assets

• Example: rate limiting

• Desired policy: can only transfer 2BTC per day out of my wallet

An Example: NameCoin

Domain name system on the blockchain: [certik.com —> IP Addr]

Need support for three operations:

• Name.new(OwnerAddr, DomainName): intent to register

• Name.update(DomainName, newVal, newOwner, OwnerSig)

• Name.lookup(DomainName)

http://certik.com

An Example: NameCoin

Name.new and Name.update create a UTXO with ScriptPK:

DUP HASH256 <OwnerAddr> EQVERIFY CHECKSIG VERIFY 
<NAMECOIN> <DomainName> <IPAddr> <1>

only owner can spend this UTXO to update domain data:

Contract: if certik.com is registered, no on else can register the domain

Problem: this contract cannot be enforced just using Bitcoin script

http://certik.com

An Example: NameCoin

Namecoin: fork of Bitcoin that implements this contract

Can we build a blockchain that is programmable to
support generic contracts?

Ethereum2

Ethereum: Enables a World of DApps

• New coins: ERC-20 Interface to DApps.

• DeFi: exchanges, lending, stablecoins, etc.

• NFTs: ERC-721 Interface to manage distinguished assets

• Games: assets managed on chain

Bitcoin as a State Transition System

UTXO1
UTXO2

…

World State

Tx: UTXO2 —> UTXO3

Inputs
UTXO1
UTXO3

…

Updated World State

Ethereum System

Layer1 (ETHv1)

• PoW consensus

• Block reward = 2 ETH + Tx fees (gas)

• Avg block rate = 15s

• ~ 150 Tx per block

ETHv2:

• PoS (Proof of Stake) consensus

• Sept 15, 2022

Ethereum Compute Layer: the EVM

World State: set of accounts identified by 32-byte address

Two types of accounts:

• Owned accounts: controlled by signing key pair (PK, SK)

• Contracts: controlled by code

• Code set at account creation time

• Does not change

Ethereum Compute Layer: the EVM

Data Owned Contracts

Address H(PK) H(CreatorAddr,
CreatorNonce)

Code — CodeHash

State — Storage Root

Balance Balance Balance

Nonce Nonce Nonce

= #Tx sent + #accounts created

Account State: Persistent Storage

Every contract has an associated storage array S[]:

• S[0], S[1], …, S[2^256 -1]: each cell holds 32 bytes, init to 0.

Account storage root: Merkle Patricia Tree hash of S[]:

• Why not directly using Merkel Tree hash?

Account State: Persistent Storage

Every contract has an associated storage array S[]:

• S[0], S[1], …, S[2^256 -1]: each cell holds 32 bytes, init to 0.

Account storage root: Merkle Patricia Tree hash of S[]:

• Why not directly using Merkel Tree hash?

S[000] = a
S[010] = b
S[011] = c
S[110] = d

Root
0

1 10, d

0 0, a

1
0 -, b

1 -, c

State Transitions: Tx and Messages

Transactions: signed data by initiator

• To: 32-byte address of target (0 means creating new contract)

• From, [Sig]: initiator address and [signature on Tx if owned accounts]

• Value: #Wei being sent with Tx

• Tx fees (EIP 1559): gasLimit, maxFee, maxPriorityFee

• Code (If To = 0): (init, body)

• Data (If To != 0): what function to call and args

• Nonce: must match current nonce of sender

• Preventing Tx replay

State Transitions: Tx and Messages

Transaction Types

• Owned -> Owned: transfer ETH between users

• Owned -> Contract: call contract with ETH and data

Messages: same as Tx, but no signature

• Contract -> Owned: contracts sends funds users

• Contract -> Contract: one program calls another (and sends funds)

One Tx from user: can lead to many Tx and messages

• Tx from Owned -> Contract -> another Contract -> Different Owned

State Transitions: Tx and Messages

An Ethereum Block

Miners: collect Txs from users

• For each Tx, execute state change sequentially

• Record updated world state in block

Leader: creates a block

Other miners: re-execute all Txs to verify the block

• Miners should only build on a valid block

• Miners are not paid for verifying block

Block Header Data (Simplified)

Consensus data: Prev hash, difficulty, PoW solution, etc

Address of gas beneficiary: where Tx fees will go

World state root: updated world state

• Merkle Patricia Tree has of all accounts in the system

Tx root: Merkel hash of all Tx in the block

Tx receipt root: Merkel hash of log messages generated in the block

Gas used: tells verifier how much work to verify block

Ethereum Contracts3

An Example Contract: NameCoin

contract nameCoin { // Solidity code

struct nameEntry {

 address owner; // address of domain owner
 bytes32 value; // IP address

}

// array of all registered domains

mapping (bytes32 => nameEntry) data;

An Example Contract: NameCoin

function nameNew (bytes32 name) {

 // registration costs is 100 Wei

 if (data[name] == 0 && msg.value >= 100) {

 data[name].owner = msg.sender; // record domain owner

 emit Register(msg.sender, name); // log event

 }

}

An Example Contract: NameCoin

function nameUpdate (

 bytes32 name, bytes32 newValue, address newOnwer) {

 // check if message is from domain owner, and update if 10Wei is paid

 if (data[name].owner == msg.sender && msg.value >= 10) {

 data[name].value = newValue; // record new value

 data[name].owner = newOwner; // record new owner

 }

}

An Example Contract: NameCoin

function nameLookup (bytes32 name) {

 return data[name];

}

} // end of contract

EVM Mechanics: Execution

Write code in Solidity (or another front-end language)

=> Compile to EVM bytecode

=> Miners use the EVM to execute contract bytecode

The EVM

Stack machine with JUMP

• Max stack depth = 1024

• Program aborts if stack size exceeds; miner keeps gas

• Contract can create or call another contract

Two types of zero initialized memory

• Persistent storage (on blockchain): SLOAD, SSTORE (expensive)

• Volatile memory (for single Tx): MLOAD, MSTORE (cheap)

• LOG0(data): write data to log

Every Instruction Costs Gas

SSTORE addr (32bytes), value (32bytes)

• Zero -> Non-Zero: 20,000 gas

• Non-Zero -> Non-Zero: 5,000 gas (for a cold slot)

• Non-Zero -> Zero: 15,000 gas refund

Refund: is given for reducing size of blockchain state

Every Instruction Costs Gas

SELFDESTRUCT addr (32bytes)

• Kill current contract

• In the past, 24,000 gas refund

CREATE

• 32,000 + 200 * (code size) gas

Gas Calculation

Why charge gas?

• Prevents submitting Tx that runs for many steps

• During high load: miners choose Tx from the mempool with high gas

Old EVM (prior to EIP 1559)

• Every Tx contains a gasPrice “bid” (gas -> Wei conversion price)

• Miners choose Tx with highest gasPrice

• First price auction

• Not efficient

Gas Calculation (EIP 1559)

Every block has a “baseFee”:

• The minimum gasPrice for all Tx in the block

baseFee is computed from total gas in earlier blocks:

• If earlier blocks as “target size” (15M gas) => baseFee does not change

• If earlier blocks at gas limit (30M gas) => baseFee goes up 12.5%

• If earlier blocks empty => baseFee decreases by 12.5%

Gas Calculation (EIP 1559)

EIP1559 Tx specifies three parameters:

• gasLimit: max total gas allowed for Tx

• maxFee: max allowed gasPrice

• maxPriorityFee: additional “tip” to be paid to miner

• gasPrice = min (maxFee, baseFee + maxPriorityFee)

Let’s Look at a Transition

Transaction ID: 0xe3b0c810424edca4d07a00a84…

• From: 0x628ebe4e3fe7386da04a6f9a37ccb5e980c22ffc

• To: Contract 0x1a2a1c938ce3ec39b6d47113c7955baa9dd454f2

• (Axie Infinity: Ronin Bridge)

• Value: 0.167 Ether

• Data: Function: depositEthFor [0]:
d256119bb3ca86c7c9fcda4daba95bd233150e6

Let’s Look at a Transition

Contract: 0x1a2a1c938ce3ec39b6d47113c7955baa9dd454f2

• (Axie Infinity: Ronin Bridge)

Let’s Look at a Transition

Let’s Look at a Transition

Discussion Session
How to raise funds?4

